Возведение в квадрат чисел, оканчивающихся на 25. Техника быстрого счета. Быстрый устный счет

Содержание

Вычислительные приёмы

Возведение  в квадрат чисел, оканчивающихся на 25. Техника быстрого счета. Быстрый устный счет

На олимпиаде Кенгуру и на Внешнем независимом тестировании запрещено пользоваться калькуляторами. Поэтому очень важно научиться тратить на вычисления как можно меньше времени, чтобы использовать его на обдумывание задач.

Умножение двузначного числа на 11

Чтобы двузначное число умножить на 11, сложите его первую и последнюю цифру. Если результат будет однозначным, впишите его между двумя цифрами первоначального числа, а если двузначным – прибавьте первую цифру результата к первой цифре первоначального числа, а вторую – впишите между цифрами.

Примеры: 45х11

Складываем 4+5=9. Поэтому результатом будет 495.

76х11
Складываем 7+6=13. Единицу прибавляем к семёрке, а тройку пишем в середину и получаем 836.

Математическое обоснование:
Пусть нужно двузначное число 10a+b. Умножить на 11. Результатом будет 110a+11b = 100a +10 (a+b) +b

Умножение и деление на 5 и 25

Чтобы число умножить число на 5, его нужно разделить на 2 и умножить на 10. Чтобы число разделить на 5, его нужно умножить на 2 и разделить на 10.

Аналогично, умножение/деление на 25 заменяется делением/умножением на 4 и умножением/делением на 100

Примеры: 36х5

Делим 36 на 2, получаем 18. Умножаем 18 на 10 и получаем 180.

3/5
Умножаем 3 на 2 и получаем 6. Делим 6 на 10 и получаем 0,6

45/25
Умножаем 45 на 4, получаем 180. Делим 180 на 100, получаем 1,8

84х25
Делим 84 на 4, получаем 21. Умножаем 21 на 100 и получаем 2100.

Математическое обоснование:
Поскольку 5=10/2, умножение/деление на 2 можно свести к более простым умножениям/делениям на 2 и 10.

Чтобы возвести в квадрат число, оканчивающееся пятёркой, нужно умножить число, полученное отбрасыванием последней пятёрки на следующее в натуральном ряду, и к результату приписать 25.

Примеры:
652
Умножаем 6 на 7, получаем 42. Приписываем 25, получаем 4225.

1152
Умножаем 11 на 12, получаем 132. Приписываем 25, получаем 13225.

Математическое обоснование:
Возведём в квадрат число 10n+5. (10n+5)2 = 100n2+100n+25 = 100n(n+1)+25, откуда и следует данное правило.

Возведение в квадрат числа, близкого к круглому

Целесообразно воспользоваться формулами квадрата суммы или разности.

Примеры:
192 = (20-1)2 = 400–40+1=361

422 = (40+2)2 = 1600+160+4 = 1764

Математическое обоснование:
Формула квадрата суммы: (a+b)2 = a2+2ab+b2
Формула квадрата разности: (a-b)2 = a2–2ab+b2

Вычитание из степени десятки

Для вычитания числа из степени десятки, нужно последнюю его цифру заменить дополнением до десяти, а остальные (включая первые виртуальные нули) – дополнениями до девяти.

Примеры: 1000-725 = (9-7)(9-2)(10-5) = 275

100000 – 1237 = 100000 – 01237 = (9-0)(9-1)(9-2)(9-3)(10-7) = 98763

Математическое обоснование:
Правило следует из алгоритма вычитания столбиком.

Прибавление числа, близкого к степени десятки

Вместо прибавления числа, состоящего из девяток и оканчивающегося на 9 (8, 7, 6 и т.д.), прибавьте следующую большую степень десятки и вычтите 1 (2, 3, 4 и.т.д)

Примеры: 125+999 = 1125-1 = 1124

6528+996 =7258-4=7254

Математическое обоснование:
Для k-значного числа 99…9 = 100..00 – 1

Упрощённые признаки делимости на 4 и 8

Обычно для проверки делимости на 4 применяется следующий признак: Если двуциферное окончание числа делится на 4, то и само число делится на 4.

Однако, использовав обобщённый признак делимости, заметим, что число 10 даёт остаток 2 при делении на 4. Поэтому переформулируем правило так: Если сумма последней цифры с удвоенной предпоследней делится на 4, то и само число делится на 4.

Аналогично для делимости на 8. Вместо проверки на делимость трёхциферного окончания, можно выполнять проверку суммы последней, удвоенной предпоследней и учетверённой третьей с конца цифры.

Примеры: Число 1324 4+2*2=8 – делится на 4.

4+2*2+3*4=20 – не делится на 8

Число 6328 8+2*2=12 – делится на 4.

8+2*2+3*4=24 – делится на 8

Математическое обоснование:
Обобщённый признак делимости подробно рассмотрен в отдельной статье.

Источник: http://intelmath.narod.ru/fastcount.html

Хранилище полезных ресурсов

Возведение  в квадрат чисел, оканчивающихся на 25. Техника быстрого счета. Быстрый устный счет

Как быстро считать? Хитрые приемчики счета в уме

Как научиться быстро считать в уме? Не так уж сложно, как многие думают. Для этого вовсе не надо быть математическим гением. Достаточно выучить несложные правила и методы счета в уме, чтобы значительно увеличить скорость вычислений.

Умножение чисел от 10 до 20

К одному из чисел прибавляем количество единиц другого, сумму умножаем на 10 и прибавляем произведение единиц чисел.

Например:

15 х 17 = (15 + 7) х 10 + 5 х 7 = 220 + 35 = 255

Примечание. Не веришь? Возьми калькулятор и убедись. У меня всё без обмана. Но в случае, например, 98 х 12 это правило уже не работает, т.к. 98 больше, чем 20.

Возведение в квадрат чисел, оканчивающихся на 5

Число, оканчивающееся на 5, возводим в квадрат так: 100 х (количество десятков числа) х (количество десятков + 1) + 25.

Например:

Возведем 35 в квадрат:

100 х 3 х (3+1) + 25 = 300 х 4 + 25 = 1225

Умножение на 5, 50, 25 и 125

Умножая число Х на эти числа, удобно пользоваться такими выражениями: X x 5 = X x 10 : 2 X x 50 = X x 100:2 X x 25 = X x 100:4

X x 125 = X х 1000:8

Например:

22 x 5 = 22 x 10 : 2 = 220 : 2 = 110 34 x 50 = 34 x 100 : 2 = 3400 : 2 = 1700 46 x 25 = 46 x 100 : 4 = 4600 : 4 = 1150

64 x 125 = 64 x 1000 : 8 = 64000 : 8 = 8000

Деление на 5, 50, 25

При делении числа Х на эти числа удобно иметь в виду, что: X : 5 = X x 2 :10 X : 50= X x 2 : 100

X : 25 = X x 4 : 100

Например:

75 : 5 = 75 x 2 : 10 = 150 : 10 = 15 4350 : 50 = 4350 x 2 : 100 = 8700 : 100 = 87

8600 : 25 = 8600 x 4 : 100 = 34400 : 100 = 344

Быстрое сложение и вычитание натуральных чисел, хитрость 1

Если одно из слагаемых увеличить на несколько единиц, то из полученной суммы надо вычесть столько же единиц.

Например:

654 + 348 = (654 + 348 + 2) — 2 = 1004 — 2 = 1002

Быстрое сложение и вычитание натуральных чисел, хитрость 2

Если одно из слагаемых увеличить на несколько единиц, а второе уменьшить на столько же единиц, то сумма не изменится.

Например:

334 + 768 = (334 + 6) + (768 — 6) = 340 + 762 = 1102

Быстрое сложение и вычитание натуральных чисел, хитрость 3

Если к вычитаемому и уменьшаемому прибавить (или отнять) одно и то же количество единиц, то разность не изменится.

Например:

345 — 229 = (345 + 5) — (229 + 5) = 350 — 234 = 116

Быстрое умножение натуральных чисел

Чтобы получить единицы произведения, перемножим единицы множителей. Для получения десятков произведения умножают десятки одного множителя на единицы другого и наоборот и результаты складывают. Для получения сотен перемножаем десятки множителей.

Например:

Умножим 43 х 57:

а) 3 х 7 = 21 (пишем в результате 1 справа, а в уме держим 2)

б) 4 х 7 + 3 х 5 + 2 (из ума)(пишем 5 левее от 1 из пункта «а», в уме держим 4)

в) 4 х 5 + 4 (из ума) = 24 (пишем 24 слева от 5)

В итоге: 43 х 57 = 2451.

Для не двузначных чисел действуем аналогично.

Примечание. Вообще, в начальной школе данная метода называется просто-напросто «умножение столбиком», но начальная школа — это было так давно, правда?..

Умножение чисел, у которых число десятков одинаково, а сумма единиц равна 10

Число десятков любого из множителей умножить на число, которое больше на 1, затем перемножить отдельно единицы этих чисел, после чего к первому результату приписать второй справа.

Например:

Умножим 303 на 307: а) 30 х (30 +1) = 900 + 30 = 930 б) 3 х 7 = 21 Записываем первый результат, а справа — второй:

93021

Умножение числа Х на двузначное число вида YY

Умножаем Х на Y (на одну цифру), а потом на 11.

Например:

12 х 44 = (12 х 4) х 11 = 48 х 11 = 480 + 48 = 528

Умножение на 11

Чтобы умножить число Х на 11, представим 11 как сумму 10 + 1.

Например:

15 х 11 = 15 х (10 + 1) = 150 + 15 = 165

123 х 11 = 123 х (10 + 1) = 1230 + 123 = 1353

Умножение на 11 двузначного числа с суммой цифр меньше 10

Если сумма цифр умножаемого на 11 двузначного числа Х меньше 10, то «вставляем» сумму цифр между самими цифрами Х и, таким образом, получаем произведение.

Например:

36 х 11 = 3 (между цифрами вставляем сумму 3+6=9) 6 = 396

17 х 11 = 1 (между цифрами вставляем сумму 1+7=8) 7 = 187

Примечание. Этот способ годится только для двузначных чисел!

Умножение на 111 двузначного числа с суммой цифр меньше 10

Если сумма цифр умножаемого на 111 двузначного числа Х меньше 10, то дважды «вставляем» сумму цифр между цифрами Х и, таким образом, получаем произведение.

Например:

52 х 111 = 5 (между цифрами дважды вставляем сумму 5+2=7) 2 = 5772

Умножение на 11 трехзначного числа

Чтобы умножить трехзначное число Х на 11:

1. Произведение будет четырехзначным. Цифра тысяч в произведении — это цифра сотен числа.

2. Цифра сотен произведения — это цифра сотен Х плюс цифра десятков Х.

3. Цифра десятков произведения — это цифра десятков Х плюс цифра единиц Х.

4. Цифра единиц произведения — это цифра единиц числа Х.

Например:

245 х 11=?

2 — цифра тысяч произведения,

2 + 4 = 6 — цифра сотен произведения,

4 + 5 = 9 — цифра десятков произведения,

5 — цифра единиц произведения.

245 х 11 = 2695

В случае, если сумма двух цифр больше 9, то от суммы отнимается 10 и получившаяся разность записывается вместо суммы, а к старшему (соседнему слева) разряду прибавляется 1.

Например:

489 х 11 = ?

4 — цифра тысяч произведения,

4+8 = 12. 12-10 = 2. 2 — цифра сотен произведения. К разряду тысяч прибавляем 1: 4+1 = 5.

Источник: http://linkhelp.ucoz.ru/news/prijomy_bystrogo_schjota/2013-07-31-267

Быстрое возведение чисел от 1 до 100 в квадрат

Возведение  в квадрат чисел, оканчивающихся на 25. Техника быстрого счета. Быстрый устный счет

Вдохновленный этой статьей, решил поделиться с вами способом быстрого возведения в квадрат. Возведение в квадрат более редкая операция, нежели умножение чисел, но под нее существуют довольно интересные правила.
*квадраты до сотни Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.

Правило 1 (отсекает 10 чисел)

Для чисел, оканчивающихся на 0. Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей. 70 * 70 = 4900. В таблице отмечены красным.

Правило 2 (отсекает 10 чисел)

Для чисел, оканчивающихся на 5. Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.75 * 75 = 7 * 8 = 56 … 25 = 5625. В таблице отмечены зеленым.

Правило 3 (отсекает 8 чисел)

Для чисел от 40 до 50.
XX * XX = 1500 + 100 * вторую цифру + (10 — вторая цифра)2 Достаточно трудно, верно? Давайте разберем пример:43 * 43 = 1500 + 100 * 3 + (10 — 3)2 = 1500 + 300 + 49 = 1849. В таблице отмечены светло-оранжевым.

Правило 4 (отсекает 8 чисел)

Для чисел от 50 до 60.
XX * XX = 2500 + 100 * вторую цифру + (вторая цифра)2 Тоже достаточно трудно для восприятия. Давайте разберем пример:53 * 53 = 2500 + 100 * 3 + 32 = 2500 + 300 + 9 = 2809. В таблице отмечены темно-оранжевым.

Правило 5 (отсекает 8 чисел)

Для чисел от 90 до 100.
XX * XX = 8000+ 200 * вторую цифру + (10 — вторая цифра)2 Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:93 * 93 = 8000 + 200 * 3 + (10 — 3)2 = 8000 + 600 + 49 = 8649. В таблице отмечены темно-темно-оранжевым.

Правило №6 (отсекает 32 числа)

Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел.

Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения 🙂 В таблице отмечены синим. Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам.

Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:

Формулы (осталось 24 числа)

Для чисел от 25 до 50XX * XX = 100(XX — 25) + (50 — XX)2 Например:37 * 37 = 100(37 — 25) + (50 — 37)2 = 1200 + 169 = 1369 Для чисел от 50 до 100XX * XX = 200(XX — 50) + (100 — XX)2 Например:67 * 67 = 200(67 — 50) + (100 — 67)2 = 3400 + 1089 = 4489

Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):

(a+b)2 = a2 + 2ab + b2.562 = 502 + 2*50*6 + 6*2 = 2500 + 600 + 36 = 3136.

UPDATE

Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»: Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков». Для квадратов, соответственно, еще проще.92*92 = (92-8)*100+8*8 = 8464
(от sielover) Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга. Кстати, думаю, все читатели хабры знают, что 642 = 4096, а 322 = 1024. Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 882 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности. Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней. Если тема быстрого счета интересна — буду писать еще.

Замечания об ошибках и правки прошу писать в лс, заранее спасибо.

  • Счет в уме
  • возведение в квадрат
  • тренировка памяти

Источник: https://habr.com/post/178831/

«Быстрый счет. Тридцать простых приемов устного счета»

Возведение  в квадрат чисел, оканчивающихся на 25. Техника быстрого счета. Быстрый устный счет

Ленинград.

От составителя

В настоящее время в продаже нет руководств, содержащих наставления к быстрому выполнению счетных операций в уме.

Мы сочли поэтому полезным собрать в краткой брошюре наиболее простые и легко усваиваемые приемы быстрого устного счета, Они рассчитаны на средние способности имеют в виду не публичные выступления на эстраде, а потребности повседневной жизни.

Пользующиеся книжечкой должны помнить, что успешное овладение ее указаниями предполагает не механическое, а вполне сознательное распоряжение приемами и, кроме того, более или менее продолжительную тренировку. Зато, усвоив рекомендуемые приемы, можно выполнять быстрые расчеты в уме с безошибочностью письменных вычислений.

§ 1.

Чтобы устно умножить число на однозначный множитель (например, 27 X 8) выполняют действие, начиная с умножения не единиц, как при письменном умножении, а иначе: умножают сначала десятки множимого (20X8 = 160), затем единицы (7*8 =56) и оба результата складывают.

Еще примеры:

34*7=30*7+4*7=210+28=238

17*6=40*6+7*6=240+42=282

§ 2.

Полезно знать на память таблицу умножения до 19*9:

Зная эту таблицу, можно умножение например, 147*8 выполнить в уме так: 147*8-140*8+7*8= 1120 + 56= 1176

§ 3

Когда одно из умножаемых чисел разлагается на однозначные множители, удобно бывает последовательно умножать на эти множители. Например: 225*6=225*2*3=450*3=1350

§ 4

Умножение на двузначное число стараются облегчить для устного выполнения, приводя это действие к более привычному умножению на однозначное число.

Когда множимое однозначное, мысленно переставляют множители и выполняют действие, как указано в § 1. Например:

6*28=28*6=120+48=168

§ 5.

Если оба множителя двузначные, мысленно разбивают один из них на десятки и единицы. Например:

29*12=29*10+29*2=290+58= 348

41*16=41*10+41*6 = 410+246 =656

(или 41*16=16*41 = 16*40+16*1=640+16=656

Разбивать на десятки и единицы выгоднее тот множитель, в котором они выражены меньшими числами.

§ 6.

Если множимое или множитель легко разложить в уме на однозначные числа (напр., 14 = 2*7), то пользуются этим, чтобы уменьшить один из множителей, увеличив другой во столько же раз (ср. § 3). Например:

45*14 =90*7=630

§ 7.

Чтобы устно умножить число на 4, его дважды удваивают. Например:

112*4 =224*2=448

335*4 = 670*2 =1340

§ 8.

Чтобы устно умножить число на 8, его трижды удваивают. Например:

217*8 = 434*4=868*2=1736

(Eще удобнее: 217*8=200*8 +17*8= 1600*13=1736.

§ 9.

Чтобы устно разделить число на 4, его дважды делят пополам. Например:

76:4 =38:2=19

236:4=118:2=59

§ 10.

Чтобы устно разделить число на 8, его трижды делят пополам. Например:

464:8=232:4=116:2=58

516:8=258:4=129:2= 64 1/2

§ 11.

Чтобы устно умножить число на 5 умножают его на 10/2, т. е. приписывают к числу ноль и делят пополам. Например:

74*5= 740:2= 370

243*5=2430:2=1215

При умножении на 5 числа четного удобнее сначала делить пополам и к полученному приписать ноль. Например:

74*5 = 74/2*10=370

§ 12.

Чтобы устно умножить число на 25, умножают его на 100/4 , т. е.—если число кратно 4-х —делят на 4 и к частному приписывают два ноля. Например:

72*25=72/4*100= 1800

Если же число при делении на 4 дает остаток, то прибавляют

при остатке: к частному

1 25

2 50

3 75

Основание приема ясно из того, что

100:4=25;

200:4=50;

300:4=75

§ 13.

Чтобы устно умножить число на 11/2 прибавляют к множимому его половину. Например:

34*11/2 = 34 + 17=51

23*11/2=23 + 111/2 = 341/2 (или 34,5)

§ 14.

Чтобы устно умножить число на 11/4 Прибавляют к множимому его четверть. Например:

48*11/4 =48 +12=60

58*11/4 = 58+14 1/2=721/2 или 72,5

§ 15

Чтобы устно умножить число на 21/2. к удвоенному числу прибавляют половину множимого.

Например: 18*21/2.=36+9= 45;

39*21/2.= 78 + 191/2.= 971/2 (или 97,5)

Другой способ состоит в умножении на 5 и делении пополам:

18*21/2 = 90:2 = 45

§ 16.

Чтобы устно умножить число на 3/4 (т. е. чтобы найти 3/4 этого числа), умножают число на 11/2 и делит пополам. Например:

30 * 3/4 = (30+15)/2= 221/2 (или 22,5)

Видоизменение способа состоит в том, что от множимого отнимают его четверть или к половине множимого прибавляют половину этой половины.

§ 17

Умножение на 15 заменяют умножением на 10 и на 11/2, (потому что 10*11/2 =15) Например:

18*15=18*11/2*10=270

45*15=450+225=675

§ 18.

Умножение на 125 заменяют умножением на 100 и на 11/4 (потому что 100*11/4=125). Например:

26*125 = 26*100*11/4 = 2600 + 650 = 3250

47*125 = 47*100*11/4 = 4700+4700/4= 4700+1175 = 5875

§ 19.

Умножение на 75 заменяют умножением на 100 и на 3/4 (потому что 100*3/4=75). Например:

18*75= 18*100*3/4 =1800* 3/4 =(1800 + 900)/2=1350

Примечание. Некоторые из приведенных примеров удобно выполняются также приемом § 6

18*15 = 90*3 = 270

26*125 = 130*25 = 3250

§ 20.

Чтобы устно умножить число на 9, приписывают к нему ноль и отнимают множимое. Например:

62*9=620-62=600—42=558

73*9=730-73=700—43=657

§ 21

Чтобы устно умножить число на 11, приписывают к нему ноль и прибавляют множимое. Например:

87*11=870+87=957

§ 22

Чтобы устно разделить число на 5, отделяют запятой в удвоенном числ-последнюю цифру. Например:

68:5=136:10=13,6

237:5 =474:10=47,4

§ 23

Чтобы устно разделить число на 11/2 делят удвоенное число на 3. Например:

36:11/2=72:3=24

53:11/2=106:3=351/3

§ 24.

Чтобы устно разделить число на 15, делят удвоенное число на 30. Например

240:15=480:30=48:3=16

462:15=924:30=3024/30=304/5=30,8 (или 924:30 =308:10=30,8)

$ 25.

Чтобы возвысить в квадрат число, оканчивающееся цифрой 5 (например 85), умножают число десятков (8) на него же плюс единица (8*9=72) и приписывают 25 (в нашем примере получается 7225). Еще примеры:

252; 2*3=6; 625

452; 4*5= 20; 2025

1452; 14*15 = 210; 21025

Прием этот вытекает из формулы (10х+5)2 = 100х2+100х+25=100х(х+1)+25

§ 26.

Сейчас указанный прием приложим и к десятичным дробям, оканчивающимся цифрой 5:

8,52 = 72,25

14,52=210,25

0,352 = 0,1225f и т. п.

§ 27.

Так как 0,5= ½, а 0,25 = ¼, то приемом § 25 можно пользоваться также и для возвышения в квадрат чисел, оканчивающихся дробью ½:

(8½ )2 =72 ¼

(14½)2 = 210 ¼ и т п.

§ 28.

При устном возвышении в квадрат часто удобно бывает пользоваться формулой (a +-b)2 = a2 +b2+- 2ab.

Например: 412=402 +1+2*40= 1601+80= 1681

692=702+1-2*70=4901-140=4761

362 =(35+1)2=1225+1+ 2*35=1296

Прием удобен для чисел, оканчивающихся на 1, 4, 6 и 9.

§ 29.

Пусть требуется выполнить устно умножение 52*48

Мысленно представляем эти множители в виде (50 + 2)*(50—2)

и применяем приведенную в заголовке формулу:

(50+2)*(50—2)=502-22= 2496

Подобным же образом поступают во всех вообще случаях, когда один множитель удобно представить в виде суммы двух чисел, другой — в виде разности тех же чисел:

69*71=(70—1)*(70+1)=4899

33*27=(30+3)*(30—3)=891

53*57=(55—2)*(55+2)=3021

84*86=(85-1)*(85+1)=7224

§ 30.

Указанным сейчас приемом удобно пользоваться и для вычислений следующего рода:

7 ½*6½=(7 + ½ )*(7 — ½)=48 ¾

11 3/4*12 1/4= (12 — 1/4)*(12 +1/4) =143 15/16

Полезно запомнить:

37*З =111

Запомнив это, легко выполнять устно умножение числа 37 на 6, 9, 12 и т. п.

37*6=37*3*2=222

37*9=37*3*3=333

37*12=37*3*4=444

37*15=37*3*5 =555 и т. д,

7*11*13=1001

Запомнив это, легко выполнять устно умножения следующего рода:

77*13=1001

77*26=2002

77*39=3003 и т. д.

91*11=1001

91*22=2002

91*33=3003 и т. д.

143*7=1001

143*14=2002

143*21=3003 и т. д.

В нашей книжечке указаны только простейшие, наиболее удобоприменимые способы устного выполнения действий умножения, деления и возвышения в квадрат. Практикуясь в сознательном пользовании ими, вдумчивый читатель выработает для себя ряд еще и других приемов, облегчающих вычислительную работу.

Оглавление

  • Умножение на однозначное число
  •   § 1.
  •   § 2.
  •   § 3
  • Умножение на двузначное число
  •   § 4
  •   § 5.
  •   § 6.
  • Умножение на 4 и на 8
  •   § 7.
  •   § 8.
  • Деление на 4 и на 8
  •   § 9.
  •   § 10.
  • Умножение на 5 и на 25
  •   § 11.
  •   § 12.
  • Умножение на 11/2, на 1 1/4, на 21/2, на 3/4
  •   § 13.
  •   § 14.
  •   § 15
  •   § 16.
  • Умножение на 15, на 125, на 75
  •   § 17
  •   § 18.
  •   § 19.
  • Умножение на 9 и на 11
  •   § 20.
  •   § 21
  • Деление на 5, на 11/2,на 15
  •   § 22
  •   § 23
  •   § 24.
  • Возвышение в квадрат
  •   $ 25.
  •   § 26.
  •   § 27.
  •   § 28.
  • Вычисления по формуле
  •   § 29.
  •   § 30.
  • Полезно запомнить:
  • Источник: https://www.bookol.ru/nauka_obrazovanie/matematika/218965/fulltext.htm

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.