December 03 2016 02:27:51
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
уравнение Ван-дер-Ваальса
ОСНОВЫ  ТЕРМОДИНАМИКИ

  Напомним, что в модели идеального газа пренебрегают размерами молекул, считая их материальными точками, а также их взаимным притяжением, которым действительно можно пренебречь, когда средние расстояния между молекулами измеряются десятками их радиусов и более. В этих случаях кинетическая энергия молекул газа много больше их потенциальной энергии взаимодействия на расстоянии, и этой потенциальной энергией можно пренебречь. Таким образом, модель идеального газа (как и любая модель) имеет свои границы применимости.

Если рассматривать явления природы, в которых собственные размеры молекул и их взаимодействие на расстоянии играют существенную роль (как, например, при фазовом переходе вещества из газообразного состояния в жидкое), то, естественно, такие явления не могут быть описаны с помощью уравнения состояния идеального газа. Следовательно, необходимо использовать другие модели, больше отвечающие реальности. Законы взаимодействия между молекулами можно постараться учесть, однако при этом все время надо помнить, что эти законы отличаются у разных веществ, и, следовательно, учитывающая их модель не будет обладать такой универсальностью как модель идеального газа.

Следующей по простоте моделью (после модели идеального газа) является модель газа, предложенная голландским физиком Ван-дер-Ваальсом. В ней учитывается как наличие собственного объема молекул, так и добавочное давление в газе, вызванное взаимным притяжением молекул. Отдельные молекулы, находящиеся в приграничном слое вещества, испытывают направленное внутрь силовое действие, которое можно считать пропорциональным концентрации молекул, а число молекул также пропорционально концентрации, и, следовательно, добавочное давление пропорционально квадрату концентрации (N/V)2 молекул газа. А если  еще из номинального объема газа вычесть собственный объем молекул, чтобы учитывать только свободный для движения молекул объем, то вместо уравнения идеального газа получается уравнение состояния для газа Ван-дер-Ваальса,

где  a1  и  b1  -  две подгоночные константы, отнесенные к одной молекуле. В расчёте на один моль эти постоянные Ван-дер-Ваальса (не универсальные, а разные у разных веществ) суть   а  =  NA2a1    и      b = NAb1.

Теперь уравнение Ван-дер-Ваальса (в расчете на один моль) принимает вид

                        (P + a/V2)(V – b) = RT.                          (8.1)

      Это уравнение качественно правильно отражает поведение реальных газов, хотя в количественном отношении полного совпадения нет.

Молярные постоянные Ван-дер-Ваальса  а  и  b для всех веществ измерены и занесены в соответствующие таблицы.

    Если нарисовать изотермы газа Ван-дер-Ваальса в координатах давление-объем, то они имеют вид, представленный на  Рис. 4.

      Р





     РК                              К

                    Пар

            С

                          ТК                

            Д

                                                                                                            в                                                  

                                                                 VА      VК       VД                                V

                 Рис. 4.  Изотермы газа Ван-дер-Ваальса

Как видно из рис.4, ниже некоторой (критической) температуры Тк изотермы дают S-образный участок кривой АВСД, который в опытах с реальными газами не наблюдается. Вместо него между точками А и Д сосуществуют две фазы – жидкая и газообразная. Здесь газ частично конденсируется в жидкость так, что при изменении объема давление все время остается постоянным между точками А и Д, изменяется лишь доля молекул газа, находящегося в состоянии насыщенного пара, а изотерма представляет собой горизонтальную прямую. При температурах, заметно превышающих критическую температуру, изотермы Ван-дер-Ваальса не отличаются существенно от гиперболических изотерм идеального газа (Рис.1).

     Точка К на критической изотерме представляет собой точку перегиба кривой. Как известно из математики, в точке перегиба не только первая, но и вторая производная обращается в нуль. Это позволяет в данной точке связать с постоянными Ван-дер-Ваальса значения давления Рк, объема Vк и температуры Тк, которые получили название критических. Они определяются из уравнений

                            img08  

Сравнивая второе и третье уравнения, получаем

                                                 VK = 3b,                (8.2)    а подстановка VK  во второе уравнение дает

                                          ТК = 8а/27Rb,            (8.3)              

и подстановка VK и ТК в первое уравнение дает

                                              PK = a/27b2.           (8.4)

    Знание координат критической точки (VK, PK, ТК), найденное опытным путем, позволяет выразить через них газовую постоянную R и обе константы Ван-дер-Ваальса по формулам

    R = 8PKVK/3ТК,                 b = VK/3,                a = 3PKVK2              (8.5)

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.04 секунд 4,189,994 уникальных посетителей