Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

Содержание

Техника быстрого счета. Быстрый счет в уме

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

Научиться быстро считать не так уж сложно, а хорошему физику и математику просто необходимо владеть основными приемами быстрого счета. Нижеперечисленные способы быстрого устного счета расчитаны на ум «обычного» человека и не требуют уникальных способностей. Главное — более или менее продолжительная тренировка.

Упрощение сложения и вычитания

Промежуточное приведение к «круглым» числамСпособ «корневых» чиселСпособ «средних» чисел, или сумма арифметической прогрессииИспользование изменения порядка счетаСоединение соседних разрядовИспользование дополнения числа для упрощения вычитания из чиселПереход от вычитания к сложению

Упрощение умножения и деления

В истории математики известно около 30 общих способов умножения, отличающихся либо схемой записи, либо самим ходом вычисления. Пожалуй, принятый у нас обычный способ умножения является наиболее удобным … для преподавания в младших классах, но отнюдь не лучшим в применении.Поэтому мы настоятельно советуем освоить тот способ умножения, который индусы называют молниеносным, а греки — «хиазм». Известно и другое его название — способ Фурье, а в начале века после блестящих выступлений в России «счетчика» Ферроля этот способ именовался не иначе, как способом умножения Ферроля. Многие из этих названий мало связаны с сутью способа, поэтому позвольте остановиться на его итальянском наименовании — per crocetta, что означает — накрест.Умножение «крестом»Умножение «пирамидой»Способ обращения и сдвига

Способы, учитывающие особенности чисел

Цифры множителя делятся друг на другаВо множителе встречается цифра, равная сумме двух других цифр множителяСпособ изменения сомножителейРазложение множителей на слагаемыеСпособ дополнений для умножения чисел, близких к 10n; 2*10n; A*10nСпособ дополнений для трех сомножителейУмножение чисел, сумма единиц которых равна 10 { АС * EG | А > Е; С + G = 10}{AC*EG | A=E+1; C+G=1O}. Умножение чисел, сумма единиц которых равна 10Еще варианты{AC*EG | (A=E) v (C=G) v (A=C) v (E=G)}Умножение двузначных чисел в случаях, когда оба числа начинаются или оканчиваются цифрой пять или …Умножение двузначных чисел, оканчивающихся на «1»Умножение чисел, заключенных между 10 и 20Умножение на «9» однозначных чиселУмножение на «9» многозначных чиселУмножение на 99Умножение на 999Общий случай умножения на (10n-1)Умножение на число, близкое к 10nУмножение на 11Деление многозначного числа на число, близкое к 10nДеление многозначного числа на число, близкое к 10n. Другой способДеление с использованием умножения (или деления) делимого и делителя на одно и то же число

Упрощение возведения числа в степень и извлечения из числа корня n-ой степени

К возведению числа в квадрат, естественно, применимы многие уже рассмотренные способы сокращенного умножения. Например, 9982 легко вычислить способом дополнений.Некоторые способы возведения в квадрат (например, А5 * А5) также уже были рассмотрены в предыдущих примерах как частные случаи соответствующих способов умножения.Возведение в квадрат целого числа А, если известен квадрат предыдущего (А — 1) или последующего (А + 1) числаВозведение в квадрат целого числа А, если известны числа (А — 2)2 или (А + 2)2Возведение в квадрат чисел, оканчивающихся на 25Возведение в квадрат чисел, оканчивающихся на 75Возведение в квадрат трехзначных чисел, оканчивающихся на цифру 5Возведение в квадрат чисел вида (50 + z)Возведение в квадрат чисел вида (50 * 10n + z)Возведение в квадрат двузначных чисел, число единиц которых больше 5Извлечение корня квадратного из четырехзначного числа, представляющего полный квадратИзвлечение корня высших степеней из чисел, число цифр в которых не превышает значение показателя корня

Проверка правильности выполненных вычислений

Наиболее полная проверка достигается, конечно, повторным выполнением вычисления и обычно другим способом или с помощью выполнения обратного действия над итогом расчетов (сложение можно проверить вычитанием, умножение — делением, извлечение корня — возведением в степень и т.д.).   Несмотря на трудоемкость этих способов проверки, ими по необходимости приходится иногда пользоваться при выполнении (проверке) особо ответственных вычислений.   Однако следует знать, что при обычных расчетах можно пользоваться заметно более простыми способами проверки.Проверка вычислений с помощью остатков от деления на 9Проверка с помощью ОД9 сложения и вычитанияПроверка умножения и деления с помощью ОД9Проверка с помощью ОД9 возведения числа в степень и извлечения корня n-ой степениНе выявляемые с помощью ОД9 ошибкиПроверка с помощью ОД11Границы применения ОД11Признаки делимости на 7 и на 13

Разное

Фокус «1001 как 7, 13 и 11» Социальные комментарии Cackle

Источник: http://www.all-fizika.com/article/index.php?id_article=224

Приемы, облегчающие устный счет и запоминание таблицы умножения

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

Для того чтобы понять, какую роль в нашей жизни играют цифры, поставьте простой эксперимент. Попробуйте некоторое время обойтись без них.

Без цифр, без вычислений, без измерений… Вы окажетесь в странном мире, где почувствуете себя абсолютно беспомощным, связанным по рукам и ногам.

Как успеть на встречу вовремя? Отличить один автобус от другого? Позвонить по телефону? Купить хлеб, колбасу, чай? Сварить суп или картошку? Без чисел, а значит, без счета жизнь невозможна.

Но как тяжело иногда дается эта наука! Попробуйте быстро перемножить 65 на 23? Не получается? Рука сама тянется за мобильником с калькулятором. А, между тем, полуграмотные русские крестьяне 200 лет назад спокойно делали это, пользуясь лишь первым столбиком таблицы умножения — умножением на два. Не верите? А зря. Это — реальность.

«Компьютер» каменного века

Даже не зная чисел, люди уже пытались считать.

Если нашим предкам, обитавшим в пещерах и носившим шкуры, нужно было поменяться чем-либо с соседним племенем, они поступали просто: расчищали площадку и выкладывали, например, наконечник стрелы. Рядом ложилась рыба или горсть орехов.

И так до тех пор, пока не заканчивался один из обменных товаров, или глава «торговой миссии» не решал, что уже хватит. Примитивно, но по-своему очень удобно: и не запутаешься, и не обманут.

С освоением скотоводства задачи усложнились. Большое стадо нужно было как-то считать, чтобы знать, все ли козы или коровы на месте. «Счетной машиной» неграмотных, но умных пастухов стала долбленая тыква с камешками.

Как только животное покидало загон, пастух клал в тыкву камешек. Вечером стадо возвращалось, и пастух вынимал по камешку с каждым входившим в загон животным. Если тыква пустела, он знал, что со стадом все в порядке.

Если оставались камешки — шел искать потерю.

Когда появились цифры, дело пошло веселее. Хотя еще долго у наших предков в ходу было лишь три числительных: «один», «пара» и «много».

Можно ли считать быстрее компьютера?

Обогнать устройство, выполняющее сотни миллионов операций в секунду? Невозможно… Но тот, кто говорит так, жестоко лукавит, или просто кое-что умышленно упускает из вида. Компьютер — это лишь набор микросхем в пластике, он не считает сам по себе.

Поставим вопрос по-другому: может ли человек, считая в уме, обогнать того, кто выполняет вычисления на компьютере? И здесь ответ — да.

Ведь, чтобы получить ответ от «черного чемоданчика», данные в него необходимо сначала ввести. Это будет делать человек при помощи пальцев или голосом. А все эти действия имеют ограничения по времени.

Непреодолимые ограничения. Сама природа поставила их человеческому телу. Всему — кроме одного органа. Мозга!

Калькулятор умеет выполнять лишь две операции: сложение и вычитание. Умножение для него — это множественное сложение, а деление — множественное вычитание.

Наш мозг поступает по-другому.

Класс, где учился будущий король математики, Карл Гаусс, как-то получил задание: сложить все числа от 1 до 100. Карл написал на своей доске абсолютно правильный ответ, как только учитель закончил объяснять задание.

Он не стал прилежно складывать числа по порядку, как поступил бы любой уважающий себя компьютер. Он применил открытую им самим формулу: 101 х 50 = 5050. И это далеко не единственный прием, ускоряющий вычисления в уме.

Простейшие приемы быстрого счета

Их изучают в школе. Самое простое: если вам нужно прибавить к любому числу 9, прибавляете 10 и вычитаете 1, если 8 (+ 10 — 2), 7 (+ 10 — 3) и т.д.

54 + 9 = 54 + 10 — 1 = 63. Быстро и удобно.

Двухзначные числа складываются так же легко. Если во втором слагаемом последняя цифра больше пяти, число округляется до следующего десятка, а потом «лишнее» вычитается. 22 + 47 = 22 + 50 — 3 = 69. Если ключевая цифра меньше пятерки, то надо сложить сперва десятки, затем единицы: 27 + 51 = 20 + 50 + 7 + 1 = 78.

С трехзначными числами точно так же не возникает никаких трудностей. Складываем их, как читаем, слева на право: 321 + 543 = 300 + 500 + 20 + 40 + 1 + 3 = 864. Гораздо проще, чем в столбик. И гораздо быстрее.

А вычитание? Принцип тот же: вычитаемое округляем до целого и добавляем недостающее: 57 — 8 = 57 — 10 + 2 = 49; 43 — 27 = 43 — 30 + 3 = 16. Быстрее чем на калькуляторе — и никаких претензий от учителя даже во время контрольной!

Нужно ли учить таблицу умножения?

Дети этого, как правило, терпеть не могут. И правильно делают. Ни к чему ее учить! Но не спешите возмущаться. Никто не утверждает, что таблицу не нужно знать.

Ее изобретение приписывают Пифагору, но, скорее всего, великий математик лишь придал законченную, лаконичную форму тому, что уже было известно.

На раскопках древней Месопотамии археологи нашли глиняные таблички с сакраментальным: «2 х 2».

Люди давно пользуются этой в высшей степени удобной системой вычислений и открыли множество способов, которые помогают постичь внутреннюю логику и красоту таблицы, понять — а не тупо, механически зазубрить.

В древнем Китае таблицу начинали учить с умножения на 9. Так проще, и не в последнюю очередь потому, что умножать на 9 можно «на пальцах».

Положите обе руки на стол ладонями вниз. Первый слева палец — 1, второй — 2 и т.д. Допустим, вам нужно решить пример 6 х 9. Поднимите шестой палец. Пальцы слева покажут десятки, справа — единицы. Ответ 54.

«На пальцах» можно посчитать всю таблицу Пифагора, если умеешь умножать на 2, то есть удваивать число, а с этим, как правило, легко справляются даже дети не очень способные к математике.

Пример: 8 х 7. Левая рука — первый множитель, правая — второй. На руке пять пальцев, а нам нужно 8 и 7. Загибаем на левой руке три пальца (5 + 3 = 8), на правой 2 (5 + 2 = 7). Загнутых пальцев у нас пять, значит пять десятков. Теперь перемножим оставшиеся: 2 х 3 = 6. Это единицы. Всего 56.

Это лишь один из наипростейших приемов «пальцевого» умножения Их много. «На пальцах» можно оперировать числами до 10 000!

У «пальцевой» системы есть бонус: ребенок воспринимает ее как веселую игру. Занимается охотно, испытывает массу положительных эмоций и в итоге очень скоро начинает проделывать все операции в уме, без помощи пальцев.

Делить так же можно при помощи пальцев, но это немного сложнее. Программисты до сих пор пользуются руками, чтобы перевести числа из десятичной системы в двоичную — это удобнее и гораздо быстрее, чем на компьютере. Но в рамках школьной программы научиться быстро делить можно даже без пальцев, в уме.

Допустим, нужно решить пример 91 : 13. Столбик? Нет нужды пачкать бумагу. Делимое заканчивается на единицу. А делитель — на тройку. Что там в таблице умножения самое первое, где задействована тройка, а заканчивается на единицу? 3 х 7 = 21. Семерка! Вот и все, мы ее поймали. Надо 84 : 14. Вспоминаем таблицу: 6 х 4 = 24. Ответ — 6. Просто? Еще бы!

Волшебство числа

Большинство приемов быстрого счета похоже на фокусы. Взять хотя бы известнейший пример умножения на 11. Чтобы, например, 32 х 11 нужно написать 3 и 2 по краям, а в середину поставить их сумму: 352.

Для умножения двузначного числа на 101 надо просто записать число два раза. 34 х 101 = 3434.

Для умножения числа на 4 нужно два раза умножить его на 2. Для деления — дважды разделить на 2.

Много остроумных и, главное, быстрых приемов помогают возводить число в степень, извлекать квадратный корень.

Знаменитые «30 приемов Перельмана» для математически мыслящих людей будут покруче шоу Коперфильда, потому что они еще и ПОНИМАЮТ что происходит, и как оно происходит. Ну а остальные могут просто наслаждаться красивым фокусом. Например, нужно перемножить 45 на 37.

Напишем числа на листе и разделим их вертикальной чертой. Левое число делим на 2, отбрасывая остаток, пока не получим единицу. Правое — умножаем до тех пор, пока число строчек в столбике не сравняется.

Затем вычеркиваем из ПРАВОГО столбика все те числа, напротив которых в ЛЕВОМ столбике получился четный результат. Оставшиеся числа из правого столбика складываем. Получится 1665. Перемножьте числа привычным способом. Ответ сойдется.

«Зарядка» для ума

Приемы быстрого счета способны здорово облегчить жизнь и ребенку в школе, и маме в магазине или на кухне, и папе на производстве или в офисе. Но мы предпочитаем калькулятор. Почему? Не любим напрягаться. Нам тяжело держать числа, даже двухзначные, в голове. Почему-то не держатся.

Попробуйте выйти на середину комнаты и сесть на шпагат. Почему-то «не сажается», да? А гимнаст делает это совершенно спокойно, не напрягаясь. Тренироваться нужно!

Самый простой способ тренировки и, одновременно, разминки мозга: устный счет вслух (обязательно!) через число до ста и обратно. Утром, стоя под душем, или готовя завтрак, посчитайте: 2.. 4.. 6.. 100… 98.. 96. Можно считать через три, через восемь — главное, делать это вслух. Всего через пару недель регулярных занятий вы удивитесь, насколько ПРОЩЕ станет обращаться с числами.

Источник: http://www.calculator888.ru/blog/matematika/ustnyi-schet.html

Устный счет: техника быстрого счета в уме

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет — это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются — как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети — ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды — ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем — единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел — это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения — это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения — с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 — это дважды умножить на 2;
  • умножить на 6 — это значит умножить на 2, а потом на 3;
  • умножить на 8 — это трижды умножить на 2;
  • умножить на 9 — это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 — это дважды разделить на 2;
  • разделить на 6 — это сначала разделить на 2, а потом на 3;
  • разделить на 8 — это трижды разделить на 2;
  • разделить на 9 — это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 — это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 — 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма.

Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение.

Встречаются такие задачи очень редко — это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах.

Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы — это очень наглядно и удобно. Диапазон таких вычислений очень ограничен.

Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа — единицам. В нашем примере — 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это — из области фокусов. Правило действует только при умножении на 9.  А не проще ли, для умножения 5 на 9 выучить таблицу умножения?  Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь. 

Устный счёт на автомате

  • Во-первых, необходимо хорошо знать состав числа и таблицу умножения.
  • Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.
  • В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» — упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку — и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Источник: https://myintelligentkids.com/ustnyj-schet-texnika-bystrogo-scheta-v-ume

Приемы быстрого счета без калькулятора

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

Хоть и считается, что математика наводит ужас на значительную часть населения, но деньги считать умеют все. И вот как раз влет это умеют делать люди, далекие от математики.

Помнится, бабушка моего мужа показывала ему на пальцах таблицу умножения на 9. Никакого образования, только огромная практика торговли редиской и клубникой на рынке!

Так вот сегодня я предлагаю вам несколько интересненьких приемов устного счета. Ведь сколько бы замечательных гаджетов (телефоны, смартфоны, айподы и айпады, ай, да чего там…) своя голова она всегда лучше.

Итак, читаем, тут же проверяем и запоминаем приемы вычисления в уме.

1. Умножение на 11

Умножать на 11 чуть сложнее, чем умножать на 10. Закономерность здесь такая:

53 х 11 = 583Шаг 1 — Складываем две цифры двузначного числа: 5 + 3 = 8

Шаг 2 — Помещаем результат между двумя числами двузначного числа: 583

59 х 11 = 649Шаг 1 — 5 + 9 = 14Шаг 2 — Перекидываем единицу налево, если сумма на предыдущем шаге оказалась больше 9: 5 + 1 = 6 (справа остается второй символ, в данном случае это четверка)

Шаг 3 — На первый символ мы единицу уже перекинули, получили 6. Далее у нас осталась 4, которую ставим в центр, и дописываем 9: 649

2. Быстрое возведение в квадрат

Этот прием поможет быстро возвести в квадрат двузначное число, которое заканчивается на 5.

85 х 85 = 7225Шаг 1 — Умножаем первую цифру на первую цифру, увеличенную на единицу: 8 x (8 + 1) = 72

Шаг 2 — Дописываем к получившемуся результату 25: 7225

45 x 45 = 2025Шаг 1 — 4 х (4 + 1) = 20

Шаг 2 — 2025

3. Умножение на 5

Большинство людей очень просто запоминает таблицу умножения на 5, но, когда приходится иметь дело с большими числами, сделать это становится сложнее. Или нет? Этот прием невероятно прост.

Возьмите любое число, разделите на 2 (другими словами, поделите пополам). Если в результате получилось целое число, припишите 0 в конце. Если нет, не обращайте внимание на запятую и в конце добавьте 5.

Это срабатывает всегда:2682×5 = (2682 / 2) & 5 или 02682 / 2 = 1341 (целое число, поэтому добавьте 0)13410Давайте попробуем другой пример:5887×52943,5 (дробное число, пропустите запятую, добавьте 5)

29435

4. Умножение на 9

Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9×3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9×3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

5. Умножение на 4

Это очень простой прием, хотя очевиден лишь для некоторых. Хитрость в том, что нужно просто умножить на 2, а затем опять умножить на 2:
58×4 = (58×2) + (58×2) = (116) + (116) = 232

6. Подсчет чаевых

Если вам нужно оставить 15% чаевых, есть простой способ сделать это.

Высчитайте 10% (разделите число на 10), а потом добавьте получившееся число к его половине и получите ответ:15% от $25 = (10% от 25) + ((10% от 25) / 2)

$2.50 + $1.25 = $3.75

И, как следствие):  чтобы умножить число на 1,5 нужно к исходному числу прибавить его половину. Например,

34*1,5 = 34+17=51

125*1,5= 125+62,5=187,5

7. Сложное умножение

Если вам нужно умножать большие числа, причем одно из них — четное, вы можете просто перегруппировать их, чтобы получить ответ:32×125 все равно, что:16×250 все равно, что:8×500 все равно, что:

4×1000 = 4,000

8. Деление на 5

На самом деле делить большие числа на 5 очень просто. Все, что нужно,— просто умножить на 2 и перенести запятую: 195 / 5Шаг1: 195×2 = 390Шаг2: Переносим запятую: 39,0 или просто 39.2978 / 5Шаг1: 2978×2 = 5956

Шаг2: 595,6

9. Вычитание из 1000

Чтобы выполнить вычитание из 1000, можете пользоваться этим простым правилом: Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10:

1000-648

Шаг1: от 9 отнимите 6 = 3Шаг2: от 9 отнимите 4 = 5Шаг3: от 10 отнимите 8 = 2

Ответ: 352

И, напоследок, несколько математических трюков:

Интересные результаты:

1 х 1 = 111 х 11 = 121111 х 111 = 123211111 х 1111 = 123432111111 х 11111 = 123454321111111 х 111111 = 123456543211111111 х 1111111 = 123456765432111111111 х 11111111 = 123456787654321

111111111 х 111111111 = 12345678987654321

1 х 9 + 2 = 1112 х 9 + 3 = 111123 х 9 + 4 = 11111234 х 9 + 5 = 1111112345 х 9 + 6 = 111111123456 х 9 + 7 = 11111111234567 х 9 + 8 = 1111111112345678 х 9 + 9 = 111111111

123456789 х 9 + 10 = 1111111111

9 х 9 + 7 = 8898 х 9 + 6 = 888987 х 9 + 5 = 88889876 х 9 + 4 = 8888898765 х 9 + 3 = 888888987654 х 9 + 2 = 88888889876543 х 9 + 1 = 88888888

98765432 х 9 + 0 = 888888888

1 х 8 + 1 = 912 х 8 + 2 = 98123 х 8 + 3 = 9871234 х 8 + 4 = 987612345 х 8 + 5 = 98765123456 х 8 + 6 = 9876541234567 х 8 + 7 = 987654312345678 х 8 + 8 = 98765432

123456789 х 8 + 9 = 987654321

Любимая цифра.

Предложите  задумать свою любимую цифру. А теперь выполните умножение (на калькуляторе) числа 15873 на любимую цифру, умноженную на 7. Например, если любимая цифра 5, то умножить нужно на 35. Получится произведение, записанное только любимой цифрой.

Возможен и второй вариант: умножить число 12345679 на любимую цифру, умноженную на 9, в нашем случае это число 45.

Объяснение этого фокуса достаточно простое: если умножить 15873 на 7, то получится 111111, а если умножить 12345679 на 9, то получится 111111111.

Угадать возраст.

Умножаем число своих лет на 10, затем любое однозначное число умножить на 9,  из первого произведения вычесть второе и сообщить полученную разность. В этом числе “фокусник” должен цифру единиц сложить с цифрой десятков – получится число лет.

Всегда девятка

Предложите кому-нибудь написать число из трех разных цифр, под ним — написать число из этих же цифр, но в обратном порядке. Затем вычесть меньшее из большего. Когда зритель это сделает, скажите ему, что в середине числа стоит девятка.

Секрет фокуса: Вы будете правы, потому что девятка всегда будет в середине независимо от того, какие цифры написаны.

Рассказать друзьям

Источник: https://anisim.org/articles/priemy-bystrogo-scheta-bez-kalkulyatora/

Как быстро считать в уме: приемы устного счета больших чисел

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а  минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью «Пределы для чайников» в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4.

Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления  может быть либо число 74, либо 79.

Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Источник: https://Zaochnik.ru/blog/kak-bystro-schitat-v-ume-priemy-ustnogo-scheta-bolshix-chisel/

5 мощных ускорителей устного счета

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрого счета. All-Физика

В устном счете, как и везде, есть свои хитрости, и чтобы научиться быстрее считать нужно, знать эти хитрости и уметь применять на практике.

Сегодня мы этим и займемся!

Рассмотрим три случайных примера:

Если считать в уме обычным способом, то возникают затруднения, ведь вычитаемое число больше чем вторая цифра в первом числе и начинаются затруднения и торможения с запоминанием остатка.

Типа 25 – 7 = (20 + 5) – (5- 2) = 20 – 2 = (10 + 10) – 2 = 10 + 8 = 18

Согласитесь, что такие операции сложно проворачивать в голове.

Но есть более простой способ:

25 – 7 = 25 – 10 + 3, так как -7 = -10 + 3

Намного проще вычесть из числа 10 и прибавить 3, чем городить сложные вычисления.

Оптимизируем вычитаемые числа:

  1. Вычесть 7 = вычесть 10 прибавить 3
  2. Вычесть 8 = вычесть 10 прибавить 2
  3. Вычесть 9 = вычесть 10 прибавить 1

Итого получим:

  1. 25 – 10 + 3 =
  2. 34 – 10 + 2 =
  3. 77 – 10 + 1 =

Вот теперь намного интересней и проще!

Посчитайте сейчас представленные ниже примеры этим способом:

  1. 91 – 7 =
  2. 23 – 6 =
  3. 24 – 5 =
  4. 46 – 8 =
  5. 13 – 7 =
  6. 64 – 6 =
  7. 72 – 19 =
  8. 83 – 56 =
  9. 47 – 29 =

2. Как быстро умножать на 4, 8 и 16

В случае умножения мы тоже разбиваем числа на более простые, например:

4 * 8 = ?

Если помните таблицу умножения, то все просто. А если нет?

Тогда нужно упростить операцию:

Наибольшее число ставим первым, а второе раскладываем на более простые:

8 * 4 = 8 * 2 * 2 = ?

Удваивать числа гораздо легче, нежели чем учетверять или увосьмирять их.

Получаем:

8 * 4 = 8 * 2 * 2 = 16 * 2 = 32

Возьмем следующие примеры:

  1. 780 / 5 = ?
  2. 565 / 5 = ?
  3. 235 / 5 = ?

Деление и умножение с числом 5 всегда очень простые и приятные, ведь пять это половина от десяти.

И как их быстро решить?

Легко!

  1. 780 / 10 * 2 = 78 * 2 = 156
  2. 565 /10 * 2 = 56,5 * 2 = 113
  3. 235 / 10 * 2 = 23,5 *2 = 47

Для того чтобы проработать этот способ решите следующие примеры:

  1. 300 / 5 =
  2. 120 / 5 =
  3. 495 / 5 =
  4. 145 / 5 =
  5. 990 / 5 =
  6. 555 / 5 =
  7. 350 / 5 =
  8. 760 / 5 =
  9. 865 / 5 =
  10. 1270 / 5 =
  11. 2425 / 5 =
  12. 9425 / 5 =

4. Умножение на однозначные числа

С умножением немного сложнее, но не сильно, как бы Вы решили следующие примеры?

  1. 56 * 3 = ?
  2. 122 * 7 = ?
  3. 523 * 6 = ?

Без специальных фишек решать их не очень приятно, но благодаря методу «Разделяй и властвуй» мы можем сосчитать их гораздо быстрее:

  1. 56 * 3 = (50 + 6)3 = 503 + 6*3 = ?
  2. 122 * 7 = (100 + 20 + 2)7 = 1007 + 207 + 27 = ?
  3. 523 * 6 = (500 + 20 + 3)6 = 5006 + 206 + 36 =?

Нам остается только перемножить однозначные числа, некоторые из которых с нулями и сложить полученные результаты.

Для проработки этой техники решите следующие примеры:

  1. 123 * 4 =
  2. 236 * 3 =
  3. 154 * 4 =
  4. 490 * 2 =
  5. 145 * 5 =
  6. 990 * 3 =
  7. 555 * 5 =
  8. 433 * 7 =
  9. 132 * 9 =
  10. 766 * 2 =
  11. 865 * 5 =
  12. 1270 * 4 =
  13. 2425 * 3 =
  14. 9425 * 2 =

  15. Делимость числа на 2, 3, 4, 5, 6 и 9

Проверьте числа: 523, 221, 232

Число делится на 3, если сумма его цифр делится на 3.

Например, возьмем число 732, представим его как 7 + 3 + 2 = 12. 12 делится на 3, а значит, число 372 делится на 3.

Проверьте, какие из следующих чисел делятся на 3:

12, 24, 71, 63, 234, 124, 123, 444, 2422, 4243, 53253, 4234, 657, 9754

Число делится на 4, если число, состоящее из последних двух его цифр, делится на 4.

Например, 1729. Последние две цифры образуют 20, которое делится на 4.

Проверьте, какие из следующих чисел делятся на 4:

20, 24, 16, 34, 54, 45, 64, 124, 2024, 3056, 5432, 6872, 9865, 1242, 2354

Число делится на 5, если его последняя цифра 0 или 5.

Проверьте, какие из следующих чисел делятся на 5 (самое легкое упражнение):

3, 5, 10, 15, 21, 23, 56, 25, 40, 655, 720, 4032, 14340, 42343, 2340, 243240

Число делится на 6, если оно делится и на 2 и на 3.

Проверьте, какие из следующих чисел делятся на 6:

22, 36, 72, 12, 34, 24, 16, 26, 122, 76, 86, 56, 46, 126, 124

Число делится на 9, если сумма его цифр, делится на 9.

Например, возьмем число 6732, представим его как 6 + 7 + 3 + 2 = 18. 18 делится на 9, а значит, число 6732 делится на 9.

Проверьте, какие из следующих чисел делятся на 9:

9, 16, 18, 21, 26, 29, 81, 63, 45, 27, 127, 99, 399, 699, 299, 49

Игра «Быстрое сложение»

  1. Ускоряет устный счет
  2. Тренирует внимание
  3. Развивает творческое мышление

Отличный тренажер для развития быстрого счета. На экране дана таблица 4х4, а над ней показаны числа. Самое большое число нужно собрать в таблице. Для этого нажмите мышкой на два числа, сумма которых равна этому числу. Например, 15+10 = 25.

Играть сейчас

Игра «Быстрый счет»

Игра «быстрый счет» поможет вам усовершенствовать свое мышление. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Играть сейчас

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память. суть игры надо выбрать математический знак, чтобы равенство было верным.

На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку.

Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра «Упрощение»

Игра «Упрощение» развивает мышление и память. суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Задание на сегодня

Решить все примеры и тренироваться минимум 10 минут в игре Быстрое сложение.

Очень важно отработать все задания этого урока. Чем лучше Вы будете выполнять задания, тем больше будет пользы. Если Вы чувствуете, что Вам мало заданий — можете сами составлять себе примеры и решать их и тренироваться в математические развивающие игры.

Урок взят из курса «Устный счет за 30 дней»

Научитесь быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. Научу использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Записаться на курсПодробнее

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее.

С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля.

Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Источник: https://cepia.ru/math/uskorenie-ustnogo-scheta

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.