December 03 2016 02:24:46
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
термодинамическое уравнение состояния для энтальпии
ОСНОВЫ  ТЕРМОДИНАМИКИ

Все величины, стоящие в правой части уравнения (7.1), легко поддаются измерению на опыте, что позволяет найти зависимость внутренней энергии от объема при разных температурах.

Знание этой зависимости позволяет найти разность теплоемкостей при постоянном давлении и постоянном объеме по уравнению (2.6), то есть технически важную характеристику термодинамических объектов.

    Если переменными являются другие параметры, то термодинамическое уравнение состояния для внутренней энергии может быть записано просто по аналогии. Например, из уравнения (7.1) можно получить зависимость внутренней энергии аккумулятора от его заряда при разных температурах. Поскольку работа, совершаемая аккумулятором при перемещении по электрической цепи заряда q, равна произведению электродвижущей силы  источника тока E(ЭДС) на величину заряда, то элементарная работа имеет вид dA = Edq. Сравнивая работу газа и работу источника тока, то есть   dA = PdV и dA = Edq,  мы видим, что здесь заряд играет роль объема, а ЭДС источника – роль давления. Теперь по аналогии с уравнением (7.1) можно получить зависимость внутренней энергии аккумулятора от его заряда через температурную зависимость ЭДС аккумулятора

Поскольку температурная зависимость ЭДС при постоянном заряде легко находится опытным путем, то это уравнение приобретает прямую практическую значимость.  

    Термодинамическое тождество позволяет также получить уравнение, связывающее изменение энтальпии с термодинамическими параметрами.  Поскольку  H = U + PV, и значит  dU = dH - PdV - VdP, а дифференциал энтальпии как функции температуры Т и давления Р имеет вид

то термодинамическое тождество (5.4) после замены dU и dH  дает 

В то же время дифференциал энтропии как функции температуры Т и давления Р

и, следовательно,

Из равенства перекрестных производных

получаем

откуда, после раскрытия скобок, окончательно имеем

   Это - термодинамическое уравнение состояния для энтальпии (как функции давления при постоянной температуре), где правая часть легко определяется опытным путем.

    Что касается термодинамических уравнений состояния для двух других термодинамических потенциалов, то есть свободной энергии F и термодинамического потенциала Гиббса G, то они находятся легче и выглядят проще, чем для внутренней энергии и энтальпии. Из уравнения (6.5), которое дает  dU = dF + TdS + SdT, и термодинамического тождества TdS = dU + PdV   получаем                                        dF = - PdV – SdT.

С другой стороны, дифференциал свободной энергии как функции объема и температуры

Сравнивая эти два уравнения, находим скорость изменения свободной энергии в изотермическом процессе при изменении объема

Это термодинамическое уравнение для свободной энергии означает, что если мы знаем давление при некоторой температуре, то мы знаем быстроту изменения свободной энергии с изменением объема и можем вычислить ее изменение в изотермическом процессе.

Совершенно аналогичным образом находится выражение для дифференциала термодинамического потенциала Гиббса

Отсюда скорость изменения термодинамического потенциала в изотермическом процессе при изменении давления просто равна объему (это еще одно термодинамическое уравнение состояния)

Поскольку объем легко измеряется, то уравнение (7.4) позволяет вычислить изменение термодинамического потенциала Гиббса в изотермическом процессе при изменении давления.

Практический интерес в термодинамике представляют не абсолютные значения термодинамических функций, а их изменения при переходе системы из одного состояния в другое. Поэтому функции находят с точностью до произвольного постоянного слагаемого (и в этом смысле они похожи на потенциальную энергию в механике, которая отсчитывается от произвольного уровня, условно принимаемого за нулевой).

  1. Система связей между термодинамическими функциями. Уравнения  Гиббса - Гельмгольца. Соотношения Максвелла

Термодинамическое тождество (5.4) TdS = dU + PdV  и определения термодинамических потенциалов   H = U + PV  (6.3),  F = U – TS  (6.5)  и   (6.7) G = U – TS+ PV позволяют записать полные дифференциалы энтальпии, свободной энергии и потенциала Гиббса в виде:   dH = TdS + VdP,   dF = - SdT – PdV,   dG  = -  SdT  +  VdP.        Отсюда сразу следуют связи

img06                                (7.7)

Если подставить выражения для энтропии из (7.6) в уравнения (6.5) и  (6.7) и учесть (6.3), то получатся уравнения Гиббса-Гельмгольца, связывающие термодинамические потенциалы друг с другом и с их производными по термодинамическим параметрам



Из выражений для полных дифференциалов свободной энергии и потенциала Гиббса  (dF = - SdT – PdV   и dG = -SdT + VdP) и по свойству равенства перекрестных производных

получаем соотношения Максвелла

Слева в этих уравнениях стоят скорости изменения энтропии в изотермических процессах при изменении объема или давления, а правые части этих уравнений легко находят опытным путем.

Вторые производные от потенциалов связывают важные для практики значения теплоемкостей при постоянном объеме или давлении с изменением энтропии

   img07                               (7.13)

Оба эти уравнения (7.13) имеют отношение к третьему началу термодинамики (теореме Нернста): При приближении температуры к абсолютному нулю энтропия однородной системы стремится к нулю,  LimS]T=0 = 0.  Строго говоря, энтропия обязана стремиться к постоянному значению, которое Макс Планк предложил для определённости всегда считать равным нулю.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.05 секунд 4,189,946 уникальных посетителей