December 10 2016 05:00:07
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Термодинамические уравнения состояния
ОСНОВЫ  ТЕРМОДИНАМИКИ

Возможность разных вариантов описания одного и того же термодинамического процесса породила в термодинамике проблему, которой нет в механике, а именно, проблему  выбора переменных, выбора функций, наиболее удобно (с точки зрения практических приложений) описывающих процесс изменения состояния.

В 1875 году американский физик Гиббс показал, что для решения технических задач термодинамики вполне достаточно знать поведение в термодинамических процессах всего четырех функций, играющих в термодинамике роль, аналогичную роли потенциальной энергии в механике. Эти четыре функции соотносятся с четырьмя рассмотренными ранее процессами (два адиабатных и два изотермических), которых достаточно, чтобы смоделировать работу любого технически интересного термодинамического устройства. Термодинамических потенциалов четыре, так как в термодинамике четыре основные переменные – две механические для работы (давление и объем, то есть сила и перемещение) и две тепловые для теплоты (температура и энтропия), которые могут рассматриваться в качестве независимых координат термодинамических процессов. Это хорошо видно из выражений, описывающих два механизма передачи энергии термодинамической системе:   PdV   и   Q = TdS.

Удерживая неизменными (закрепляя) по одной механической и одной тепловой координате, мы получаем  четыре разновидности основных термодинамических процессов, которых достаточно, чтобы равновесным способом перевести термодинамическую систему из любого начального (равновесного) состояния в любое конечное (равновесное), и  соответствующие им четыре термодинамических потенциала. А раз так, то необходимо научиться находить эти основные термодинамические потенциалы (точнее – разность их значений) в разных состояниях, то есть надо найти дифференциальные уравнения, связывающие скорость изменения термодинамических потенциалов со значениями термодинамических параметров и их производными (то есть с величинами, которые могут быть определены опытным путем). Эти уравнения получили название термодинамические уравнения состояния (в отличие от обычных, термических уравнений состояния, в которые входят только термодинамические параметры и которые либо очень сложны, либо вовсе нам неизвестны). Все эти уравнения выводятся из термодинамического тождества (5.3) (термодинамической формы записи закона сохранения энергии, учитывающей существование энтропии)    ТdS =  dU + dA.

  1. Термодинамические уравнения состояния


Начнем с внутренней энергии, которую в термодинамическом тождестве можно представить через полный дифференциал двух переменных -  температуры  и объема, тогда

    Дифференциал энтропии как функции двух переменных (Т,V) можно записать в виде

Сравнивая эти два выражения, находим, что

Поскольку вторые, перекрестные производные от функции двух переменных должны быть равны независимо от порядка дифференцирования, то есть

то, следовательно,

откуда

и мы имеем термодинамическое уравнение состояния для внутренней энергии (как функции объема при постоянной температуре).

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.04 секунд 4,204,169 уникальных посетителей