December 03 2016 15:37:55
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
cs go рулетка
Собственные незатухающие колебания
Физические основы механики

Классифицируя колебания, их делят, прежде всего, на собственные и вынужденные. Представить себе собственные колебания осциллятора очень просто: отведите из положения равновесия обычный маятник и отпустите. Движение, которое за этим последует, и есть собственные колебания маятника.

Если же колебания поддерживаются периодической «вынуждающей» силой, то возникнут вынужденные колебания.

Мы обращаемся к рассмотрению собственных колебаний, амплитуда которых не меняется во времени. Такие колебания называются собственными незатухающими.

  1. Пружинный осциллятор

Пружинный маятник — это грузик массой m, прикреплённый к пружине жесткостью k. Грузик может двигаться вдоль оси x по горизонтальной поверхности без трения (рис. 12.4). Начало отсчета совместим с положением равновесия. Тогда координата грузика — x в любой момент времени равна деформации пружины. На движение маятника оказывает влияние только упругая сила. Запишем уравнение движения этого маятника.

Рис. 12.4

img682.

Это дифференциальное уравнение собственных незатухающих колебаний пружинного осциллятора. Его принято записывать так:

img683                        (12.3)

Решением этого уравнения является гармоническая функция

x = a Cos (w0t + a).                    (12.4)

Покажем, что предлагаемая функция удовлетворяет уравнению (12.3). Возьмём вторую производную по времени функции (12.4)

img684.             (12.5)

Подставим (12.4) и (12.5) в дифференциальное уравнение (12.3).

img685

Это равенство становится тождеством, если img686.

Так мы показали, что пружинный маятник при отсутствии сил трения совершает собственные незатухающие гармонические колебания x = aCos(w0t + a) c частотой img687. Эта частота зависит только от свойств осциллятора: массы груза m и жёсткости пружины k.

Начальная фаза — a определяется методом задания колебаний. Оттянем вначале груз на расстояние x0 = a и отпустим. При таком запуске колебаний в момент t = 0, x(0) = x0 = a. При этом Cos (wt + a) = Cos a = 1. Откуда следует, что a = 0.

Теперь запустим колебания по–другому. Нанесем по грузику, покоящемся в положении равновесия, короткий удар, сообщив ему тем самым начальную скорость v0. В начальный момент времени t = 0, x(0) = 0 и Cos (wt + a) = Cos a = 0. Отсюда приходим к выводу, что при таком запуске колебаний a = img688. Знак начальной фазы в этом случае определяется направлением начальной скорости v0.

Можно оттянуть грузик из положения равновесия и не просто отпустить, но и толкнуть. Тогда начальная фаза может принять любое значение от 0 до 2p.

Зная частоту колебаний img689, легко вычислить период:

img690.

Скорость колеблющегося грузика:

img691         (12.6)

тоже меняется по гармоническому закону с частотой w0. Амплитуда колебания скорости равна aw0, а по фазе скорость на img692 опережает смещение.

Ускорение груза

img693         (12.7)

колеблется с той же частотой w0, опережая смещение по фазе на p (рис. 12.5).

img694

Рис. 12.5

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.05 секунд 4,191,130 уникальных посетителей