December 05 2016 16:35:18
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
шкала Кельвина
ОСНОВЫ  ТЕРМОДИНАМИКИ

Теперь, используя шкалу Кельвина, можно в компактной форме записать все три известных из школьного курса газовых закона (Бойля-Мариотта, Шарля и Гей-Люссака) в один объединенный газовый закон, выражающийся формулой Клапейрона-Менделеева (и являющийся уравнением состояния идеального газа),

                          РV = мRT/M =RT,                        (1.2)

где м – масса газа; М –  масса моля (число граммов, равное массе молекулы, выраженной в атомных единицах массы); R –универсальная газовая постоянная (произведение числа Авогадро на постоянную Больцмана), равная 8,31 Дж/мольК; Р– давление; V – объем; Т – температура; число молей.

Эта формула тем точнее отражает поведение реальных газов, чем более они разрежены. Для одного моля вещества это уравнение принимает особенно простой вид:

                                PV = RT                           (1.2')

Следует отметить, что понять связь между теплотой и температурой было весьма непросто, так как понятие теплоты относится не к состоянию термодинамической системы, а к способу передачи энергии. Понятие количество тепла, содержащееся в системе, просто не имеет смысла, как не имеет смысла и понятие тепловой энергии. Только второе начало термодинамики связало температуру системы с поступающей в систему теплотой через дифференциальное изменение новой функции состояния, обнаруженной Рудольфом Клаузиусом (1854), именовавшейся первоначально приведенной теплотой, но названной им позднее (1865) энтропией. Подобно тому, как давление и объем (аналог силы и перемещения в механике одномерного движения) являются координатами при передаче энергии механическим (силовым) способом, то есть координатами для работы, так  температура и энтропия являются координатами при передаче энергии тепловым способом, то есть координатами для теплоты. Здесь еще можно сразу отметить, что элементарное количество переданной энергии равно произведению интенсивного параметра на приращение экстенсивного.

2.          ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ    

2.1.    Энергия, работа и теплота. Сохранение энергии

в термодинамике. Внутренняя энергия

  В механике работа, совершаемая над телом внешней силой F, находится интегрированием вдоль траектории движения элементарной работы, которая равна скалярному произведению вектора силы на вектор элементарного перемещения тела dl :

            dA =  (F·dl) .                          (2.1)

Понятие работы было введено для измерения количества энергии, передаваемой силовым, то есть механическим способом (чтобы отличать его от немеханического, теплового способа передачи энергии), и под работой всегда подразумевается макроскопическая работа на макроскопически наблюдаемом пути.

Следует еще раз подчеркнуть, что хотя через работу и измеряется количество переданной энергии, но между работой и энергией имеется существенное различие, поскольку работа является функцией процесса, то есть зависит от соотношения в этом процессе разных способов передачи энергии.  А энергия системы является функцией состояния системы, то есть функцией координат и импульсов составляющих ее частиц. При переходе системы из одного состояния в другое системой совершается разная работа при разных путях (траекториях) перехода, хотя изменение энергии системы будет одно и то же, то есть не существует закона сохранения работы в отличие от закона сохранения энергии. Хотя с точки зрения сохранения механической энергии это выглядит непонятным, но если учесть возможность передачи энергии без совершения макроскопической работы, но через микропроцессы, то есть тепловым способом (который не учитывается в механике), то все становится на свои места. В термодинамике можно изменять состояние системы, совершая над системой работу, связанную с макроскопическими перемещениями, но можно изменять и сообщая системе некоторое количество теплоты, то есть совершая суммарную микроскопическую работу по изменению энергии микрочастиц, не связанную прямо с макроскопически наблюдаемыми перемещениями частей системы.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.05 секунд 4,195,152 уникальных посетителей