Сети идеальных элементов. Правила Кирхгофа. Цепи переменного тока. Фейнмановские лекции по физике

Электрические цепи для чайников: определения, элементы, обозначения

Сети идеальных элементов. Правила Кирхгофа. Цепи переменного тока. Фейнмановские лекции по физике

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию.

Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками.

Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

 

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него.

Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь.

Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

 

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

 

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

 

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа.

Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров.

Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Источник: https://Zaochnik.ru/blog/elektricheskie-cepi-dlya-chajnikov-opredeleniya-elementy-oboznacheniya/

Основные законы Кирхгофа для электрических цепей

Сети идеальных элементов. Правила Кирхгофа. Цепи переменного тока. Фейнмановские лекции по физике

Немецкий ученый Густав Кирхгоф – один из величайших физиков всех времен, написавший целую кучу работ по электричеству.

Эти работы получили признание среди передовых ученых девятнадцатого века и стали основой для работ множества других ученых, а также дальнейшего развития науки и техники. Он был человеком который посвятил всю свою жизнь науке и несомненно сделал наш мир чуточку лучше.

В теории, законы Ома устанавливают взаимосвязь между силой, напряжением и сопротивлению тока для простых замкнутых одноконтурных цепей.

Но на практике чаще всего используются гораздо более сложные, разветвленные цепи, в систему которых может входить несколько контуров и узлов, в которые сходятся проходящие по другим ответвлениям электротоки и их невозможно описать по стандартным правилам для расчета комбинаций параллельных и последовательных цепей. Правило Кирхгофа делает возможным определение силы и напряжения тока в таких цепях.

Общие понятия и описание первого закона Кирхгофа

Первый закон Кирхгофа показывает связь токов и узлов электрической цепи. Формула связи очень проста. Это правило гласит, что сумма токов всех ветвей, которые сходятся в один узел электроцепи, равняется нулю (речь идёт об алгебраических значениях).

При этом накопление электрических зарядов в одной точке замкнутой электроцепи невозможно.
При суммировании токов принято брать положительный знак, если электроток идёт по направлению к узлу, и отрицательный знак, если ток идёт в противоположную от узла сторону. Для описания понятной аналогии для этого случая, уместны сравнения с течениями воды в соединенных между собой трубопроводах.

Пример вышеописанной формулы первого закона:

Общие понятия и описание второго закона Кирхгофа

Второй закон Кирхгофа описывает алгебраическую зависимость между электродинамической силой и напряжением в замкнутой электроцепи. В любом замкнутом контуре сумма электродинамической силы равна сумме падания напряжения на сопротивлениях, относящихся к данному контуру.

Для написания формул, определяющих второй закон Кирхгофа, берут положительное значение электродинамической силы и падение напряжений, если направление на относящихся к ним отрезках контура совпадает с произвольным направлением обхода контура. А если же направление электродинамической силы и токов противоположны выбранному направлению, то эти электродинамические силы и падение напряжений берут отрицательными:

Алгоритм определения знака величины электродинамической силы и падения напряжений:

  1. Выбираем направление обхода контурных цепей. Тут возможны несколько вариантов: либо по часовой стрелке, либо против часовой стрелки.
  2. Произвольным образом выбираем направление движения токов протекающих через элементы контурных цепей.
  3. И наконец, расставляем знаки для электродинамической силы и падения напряжений (не забывая о совпадении или несовпадении направления электродинамической силы с направлением движения обхода контура)

Пример вышеописанной формулы второго закона :

Области применения

Закономерности Кирхгофа применяются на практике для сложных контурных цепей, для выяснения распределений и значений токов в этих электроцепях.

С помощью уравнений, положенных в основу этих закономерностей моделируется система контурных напряжений и токов, после решения которой можно сказать какое направление электротока необходимо выбрать. Первое и Второе правило Кирхгофа получили огромное применение при построении параллельных и последовательных контурных цепей.

При последовательном строении электроцепи (в качестве примера отлично подойдёт новогодняя ёлочная гирлянда) сопротивление на каждом последующем элементе падает согласно закону Ома.

При параллельном строении напряжение равно подаётся на все элементы электроцепи, и для определения значений токов в любом месте электроцепи используется второй закон Кирхгофа. Также часто эти правила сочетаются с другими приёмами, такими как принцип суперпозиции и метод эквивалентного электрогенератора и составления потенциальной диаграммы.

Интересные факты:

  • Существует множество заблуждений о третьем, четвертом и т.д. правилах Кирхгофа. Густав Кирхгофф был всесторонне развитым человеком, который изучал множество наук;
  • Он сделал несколько открытий в области теоретической механики для абсолютно упругих тел, в области химии, физики, термодинамике. Именно к этим открытиям относятся эти законы, а с электродинамикой и контурными электрическими цепями не имеют ничего общего;
  • В его честь назван один из кратеров на Луне;
  • Еще один величайший изобретатель Джеймс Максвелл основывал свои идеи именно на этих двух главных закономерностях электродинамики.

Источник: http://infoelectrik.ru/nemnogo-osnov-elektrotehniki/osnovnye-zakony-kirhgofa.html

Первый и второй закон Кирхгофа — доступное объяснение

Сети идеальных элементов. Правила Кирхгофа. Цепи переменного тока. Фейнмановские лекции по физике
Для расчетов задач по электротехнике в физике есть ряд правил, часто используют первый и второй закон Кирхгофа, а также закон Ома. Немецкий ученый Густав Кирхгоф имел достижения не только в физике, но и в химии, теоретической механике, термодинамике.

В электротехнике используется закономерность, которую он установил для электрической цепи, из двух соотношений. Законы Кирхгофа (также их называют правилами) описывают распределение токов в узлах и падений напряжений на элементах контура.

Далее мы попытаемся объяснить простым языком, как применять соотношения Кирхгофа для решения задач.

Первый закон Кирхгофа

Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».

Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.

I1=I2+I3

Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:

Комплексная форма учитывает и активную и реактивную составляющие.

Второй закон Кирхгофа

Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома».

Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах».

Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности:

Вот картинка, иллюстрирующая вышесказанное:

Тогда:

Методы расчетов по первому и второму законам Кирхгофа

Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему:

Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке:

Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений.

Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков.

Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2:

Для второго:

Для третьего:

Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае.

IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура.

Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично.

Рассмотрим еще одну цепь:

Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений.

Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1):

I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго:

Для третьего:

Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно:

Nуравнений=nузлов-1

Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях.

Теперь перейдем к построению уравнений по второму правилу. Для первого контура:

Для второго контура:

Для третьего контура:

Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи.

Вывод. Главное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи.

Законы Кирхгофа для магнитной цепи

В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.

Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:

F=w*I

Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:

Um=H*I

Или магнитный поток через магнитное сопротивление:

Um=Ф*Rm

L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость.

Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:

То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?

Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM­­ ­­(магнитных напряжений).

Магнитный поток равен:

Для переменного магнитного поля:

Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.

В качестве примера рассмотрим такой контур:

Тогда для ABCD получится такая формула:

Для контуров с воздушным зазором выполняются следующие соотношения:

Сопротивление магнитопровода:

А сопротивление воздушного зазора (справа на сердечнике):

Где S — это площадь сердечника.

Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:

Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи.

Источник: https://samelectrik.ru/pervyj-i-vtoroj-zakon-kirxgofa-dostupnoe-obyasnenie.html

Правила Кирхгофа для цепей переменного тока

Сети идеальных элементов. Правила Кирхгофа. Цепи переменного тока. Фейнмановские лекции по физике

Замечание

Уравнение Ома для переменного тока:

\[I_mZ=U_m\ \left(1\right),\]

где импеданс $Z=R+i\left(\omega L-\frac{1}{\omega C}\right)$ позволяет решать все задачи для переменного тока в цепи, которая содержит индуктивность, емкость, сопротивление. Роль этого закона такая же, как и закона Ома для цепей постоянного тока. Следовательно, схема анализа разветвленных цепей переменного тока аналогична, анализу цепей постоянного тока.

Представим, что имеем сложную цепь переменного тока. Мы должны рассматривать только квазистационарные токи, так как для их мгновенных значений справедливы законы Кирхгофа, что и для постоянных токов. Для любого замкнутого контура выполняется второе правило Кирхгофа:

где ${{\mathcal E}}_{mk}$ — комплексные амплитуды ЭДС генераторов, $Z_k$ — комплексные импедансы, $I_{mk}$ — комплексные амплитуды сил тока.

[Определение]Для каждой точки разветвления цепи переменного тока выполняется первое правило Кирхгофа:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

[/Определение]

Замечание 1

Необходимо отметить, что законы постоянного тока применяются к комплексным амплитудам напряжения и ЭДС, тока и сопротивлений отдельных участков цепи.

Получается, что любую задачу о расчете цепи переменного тока можно решить, если получить решение для схемы, по которой течет постоянный ток, а затем заменить все физические величины (токи, напряжения, ЭДС, сопротивления участков) на их комплексные аналоги.

Замечание 2

Обобщение правил Кирхгофа на разветвленные цепи переменного тока было сделано Д.У. Рэлеем.

Как уже говорилось, каждая величина, которая входит в правила Кирхгофа является комплексной и уже содержит фазу (следовательно, и знак), при составлении уравнений надо проставлять знаки, так как один участок может принадлежать разным контурам, и соответственно может быть пройден по разным направлениям. Решение уравнений дает возможность найти как амплитуды всех сил токов, так и их фазы. Так как величины, входящие в уравнения комплексные, то количество уравнений в два раза больше, чем было бы, если бы токи были постоянными.

Метод контурных токов

При расчете сложных цепей используют метод контурных токов. Этот метод является следствием правил Кирхгофа. Сложный контур рассматривается как совокупность простых замкнутых контуров.

В данном методе принимается то, что на всех участках каждого замкнутого контура течет один и тот же ток. Эти токи называются котурнами. Суммарная сила тока, которая течет по участку контура, равна алгебраической сумме сил контурных токов, для которых этот участок общий.

Уравнение Кирхгофа записывается через контурные токи. При этом количество уравнений для контурных токов равно числу неизвестных токов.

Схема расчета сопротивления в цепи переменного тока

Для получения сопротивления цепи переменного тока можно применять простое правило. Гипотетически заменить каждую индуктивность ($L$) на комплексное сопротивление вида $i\omega L$, каждую емкость ($С$) — на $\frac{1}{i\omega C}$, все активные сопротивления оставить $R$.

С полученными комплексными сопротивлениями провести те же операции, что и при вычислении сопротивления цепи постоянного тока, используя правила нахождения сопротивления параллельных и последовательных соединений. Полученная в результате комплексная величина $Z=X+iY$ будет комплексным сопротивлением цепи (импедансом).

При этом $X$ — активное сопротивление цепи, $Y$ — реактивное сопротивление. Величина $\left|Z\right|$ — модуль импеданса:

есть сопротивление цепи переменного тока, оно определяет амплитуду силы тока при известной амплитуде напряжения на концах цепи. Аргумент импеданса определяет угол ($\varphi $), на который напряжение опережает ток в цепи:

Описанный метод расчета комплексных сопротивлений часто применяется в электротехнике. Он не требует вычисления сдвигов фаз (что требуется при построении диаграмм), так как они учтены в комплексных сопротивлениях. Кроме того этот метод позволяет проводить вычисления с любой точностью, тогда как методы графический и векторных диаграмм наглядны, но не точны.

При последовательном соединении импедансов он рассчитывается как сумма:

При параллельном, соответственно:

Пример 1

Задание: Найдите токи, которые текут в участках цепи, которая изображена на рис.1. Считать известными импедансы, которые указаны на рисунке.

Рисунок 1.

Решение:

На рис.1 сложный контур состоит из трех простых контуров. В уравнении Кирхгофа при обходе замкнутого контура (между его узлами) используется сила тока, протекающая по этому участку.

На каждом участке контура, в общем случае, сила тока отличается. Найдем полный импеданс для каждого участка контура между узлами (обозначим его соответствующим индексом).

Положительное направление обхода обозначено стрелками.

Запишем уравнения, в соответствии с правилами Кирхгофа:

\[Z_{11}I_1+Z_{12}I_2+Z_{13}I_3=U\left(1.1\right),\] \[Z_{21}I_1+Z_{22}I_2+Z_{23}I_3=0\left(1.2\right),\] \[Z_{31}I_1+Z_{32}I_2+Z_{33}I_3=0(1.3).\]

где $Z_{11},Z_{22},Z_{33}$ — собственные импедансы контуров, равные:

\[Z_{11}=Z_1+Z_2+Z_3(1.4),\ \] \[Z_{22}=Z_4+Z_5+Z_6+Z_2\left(1.5\right),\] \[Z_{33}=Z_3+Z_6+Z_2\left(1.6\right).\]

$Z_{12}$, $Z_{13}$… — взаимные импедансы контуров. Они равны импедансам участков контуров, причем их знак зависит от того в каком направлении проходит ток соответствующий участок по отношению к контурному току. В нашем случае:

\[Z_{12}=-Z_2,\ Z_{21}=-Z_2\ \left(1.7\right).\]

Количество уравнений, которые мы записали, равно количеству неизвестных токов. Решим нашу систему уравнений:

\[I_1=U\left(\frac{{\triangle }_{11}}{\triangle }\right),I_2=U\left(\frac{{\triangle }_{12}}{\triangle }\right),\ I_3=U\left(\frac{{\triangle }_{13}}{\triangle }\right)(1.8).\ \]

где определитель системы равен:

Рисунок 2.

${\triangle }_{11},{\triangle }_{12},{\triangle }_{13}$ — дополнения элементов $Z_{11},Z_{12},Z_{13}$ в определителе $\triangle $:

Рисунок 3.

Задача решена.

Пример 2

Задание: Цепь содержит конденсатор, емкость которого равна $C$, и активное сопротивление $R$ элементы соединены параллельно. Чему равен модуль импеданса? На какой угол напряжение опережает по фазе ток при таком соединении элементов?

Решение:

Заменим емкость $C$ на величину: $\frac{1}{i\omega C}$, учитывая, что соединение элементов параллельное, суммарный импеданс найдем как:

\[\frac{1}{Z}=i\omega C+\frac{1}{R}\to Z=\frac{1}{\frac{1}{R}+i\omega C}\left(2.1\right).\]

Приведем выражение для импеданса к виду:

\[Z=X+iY\ \left(2.2\right).\]

Для этого правую часть выражения (2.1) умножим и разделим на $\frac{1}{R}-i\omega C$, получим:

\[Z=\frac{\frac{1}{R}-i\omega C}{\frac{1}{R2}+{\omega }2C2}=\frac{R-i\omega R2C}{1+{\omega }2C2R2}\left(2.1\right).\]

Модуль импеданса равен:

\[\left|Z\right|=\sqrt{X2+Y2}=\frac{R}{\sqrt{1+{\omega }2C2R2}}.\] \[\varphi =arctg\left(\frac{Y}{X}\right)=-arc\left(\omega RC\right).\]

Ответ: $\left|Z\right|=\frac{R}{\sqrt{1+\omega2C2R2}},\varphi=-arc\left(\omega RC\right).$

Источник: https://spravochnick.ru/fizika/pravila_kirhgofa_dlya_cepey_peremennogo_toka/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.