Самоиндукция. Законы индукции. Фейнмановские лекции по физике

Содержание

Самоиндукция. Энергия самоиндукции, индуктивность — материалы для подготовки к ЕГЭ по Физике

Самоиндукция. Законы индукции. Фейнмановские лекции по физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля

Самоиндукция является частным случаем электромагнитной индукции. Оказывается, что электрический ток в контуре, меняющийся со временем, определённым образом воздействует сам на себя.

Ситуация 1 .Предположим, что сила тока в контуре возрастает. Пусть ток течёт против часовой стрелки; тогда магнитное поле этого тока направлено вверх и увеличивается (рис. 1).

Рис. 1. Вихревое поле препятствует увеличению тока

Таким образом, наш контур оказывается в переменном магнитном поле своего собственного тока. Магнитное поле в данном случае возрастает (вместе с током) и потому порождает вихревое электрическое поле, линии которого направлены по часовой стрелке в соответствии с правилом Ленца.

Как видим, вихревое электрическое поле направлено против тока, препятствуя его возрастанию; оно как бы «тормозит» ток. Поэтому при замыкании любой цепи ток устанавливается не мгновенно — требуется некоторое время, чтобы преодолеть тормозящее действие возникающего вихревого электрического поля.

Ситуация 2 . Предположим теперь, что сила тока в контуре уменьшается. Магнитное поле тока также убывает и порождает вихревое электрическое поле, направленное против часовой стрелки (рис. 2).

Рис. 2. Вихревое поле поддерживает убывающий ток

Теперь вихревое электрическое поле направлено в ту же сторону, что и ток; оно поддерживает ток, препятствуя его убыванию.

Как мы знаем, работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура — это ЭДС индукции. Поэтому мы можем дать такое определение.

Явление самоиндукции состоит в том, что при изменении силы тока в контуре возникает ЭДС индукции в этом же самом контуре.

При возрастании силы тока (в ситуации 1) вихревое электрическое поле совершает отрицательную работу, тормозя свободные заряды. Стало быть, ЭДС индукции в этом случае отрицательна.

При убывании силы тока (в ситуации 2) вихревое электрическое поле совершает положительную работу, «подталкивая» свободные заряды и препятствуя убыванию тока. ЭДС индукции в этом случае также положительна (нетрудно убедиться в том, что знак ЭДС индукции, определённый таким образом, согласуется с правилом выбора знака для ЭДС индукции, сформулированным в листке «Электромагнитная индукция»).

Индуктивность

Мы знаем, что магнитный поток, пронизывающий контур, пропорционален индукции магнитного поля: . Кроме того, опыт показывает, что величина индукции магнитного поля контура с током пропорциональна силе тока: . Стало быть, магнитный поток через поверхность контура, создаваемый магнитным полем тока в этом самом контуре, пропорционален силе тока: .

Коэффициент пропорциональности обозначается и называется индуктивностью контура:

(1)

Индуктивность зависит от геометрических свойств контура (формы и размеров), а также от магнитных свойств среды, в которую помещён контур (Улавливаете аналогию? Ёмкость конденсатора зависит от его геометрических характеристик, а также от диэлектрической проницаемости среды между обкладками конденсатора). Единицей измерения индуктивности служит генри (Гн).

Допустим, что форма контура, его размеры и магнитные свойства среды остаются постоянными (например, наш контур — это катушка, в которую не вводится сердечник); изменение магнитного потока через контур вызвано только изменением силы тока. Тогда , и закон Фарадея приобретает вид:

(2)

Благодаря знаку «минус» в (2) ЭДС индукции оказывается отрицательной при возрастании тока и положительной при убывании тока, что мы и видели выше.

Рассмотрим два опыта, демонстрирующих явление самоиндукции при замыкании и размыкании цепи.

Рис. 3. Самоиндукция при замыкании цепи

В первом опыте к батарейке подключены параллельно две лампочки, причём вторая — последовательно с катушкой достаточно большой индуктивности (рис. 3).

Ключ вначале разомкнут.

При замыкании ключа лампочка 1 загорается сразу, а лампочка 2 — постепенно. Дело в том, что в катушке возникает ЭДС индукции, препятствующая возрастанию тока. Поэтому максимальное значение тока во второй лампочке устанавливается лишь спустя некоторое заметное время после вспыхивания первой лампочки.

Это время запаздывания тем больше, чем больше индуктивность катушки. Объяснение простое: ведь тогда больше будет напряжённость вихревого электрического поля, возникающего в катушке, и потому батарейке придётся совершить большую работу по преодолению вихревого поля, тормозящего заряженные частицы.

Во втором опыте к батарейке подключены параллельно катушка и лампочка (рис. 4). Сопротивление катушки много меньше сопротивления лампочки.

Рис. 4. Самоиндукция при размыкании цепи

Ключ вначале замкнут. Лампочка не горит — напряжение на ней близко к нулю из-за малости сопротивления катушки. Почти весь ток, идущий в неразветвлённой цепи, проходит через катушку.

При размыкании ключа лампочка ярко вспыхивает! Почему? Ток через катушку начинает резко убывать, и возникает значительная ЭДС индукции, поддерживающая убывающий ток (ведь ЭДС индукции, как видно из (2), пропорциональна скорости изменения тока).

Иными словами, при размыкании ключа в катушке появляется весьма большое вихревое электрическое поле, разгоняющее свободные заряды. Под действием этого вихревого поля через лампочку пробегает импульс тока, и мы видим яркую вспышку. При достаточно большой индуктивности катушки ЭДС индукции может стать существенно больше ЭДС батарейки, и лампочка вовсе перегорит.

Лампочку-то, может, и не жалко, но в промышленности и энергетике данный эффект является серьёзной проблемой.

Так как при размыкании цепи ток начинает уменьшаться очень быстро, возникающая в цепи ЭДС индукции может значительно превышать номинальные напряжения и достигать опасно больших величин.

Поэтому в агрегатах, потребляющих большой ток, предусмотрены специальные аппаратные меры предосторожности (например, масляные выключатели на электростанциях), препятствующие моментальному размыканию цепи.

Электромеханическая аналогия

Нетрудно заметить определённую аналогию между индуктивностью в электродинамике и массой в механике.

1. Чтобы разогнать тело до заданной скорости, требуется некоторое время — мгновенно изменить скорость тела не получается. При неизменной силе, приложенной к телу, это время тем больше, чем больше масса тела.

Чтобы ток в катушке достиг своего максимального значения, требуется некоторое время; мгновенно ток не устанавливается. Время установления тока тем больше, чем больше индуктивность катушки.

2. Если тело налетает на неподвижную стену, то скорость тела уменьшается очень быстро. Стена принимает на себя удар, и его разрушительное действие тем сильнее, чем больше масса тела.

При размыкании цепи с катушкой ток уменьшается очень быстро. Цепь принимает на себя «удар» в виде вихревого электрического поля, порождаемого убывающим магнитным полем тока, и этот «удар» тем сильнее, чем больше индуктивность катушки. ЭДС индукции может достичь столь больших величин, что пробой воздушного промежутка выведет из строя оборудование.

На самом деле эти электромеханические аналогии простираются довольно далеко;они касаются не только индуктивности и массы, но и других величин, и оказываются весьма полезными на практике. Мы ещё поговорим об этом в листке про электромагнитные колебания.

Энергия магнитного поля

Вспомним второй опыт с лампочкой, которая не горит при замкнутом ключе и ярко вспыхивает при размыкании цепи. Мы непосредственно наблюдаем, что после размыкания ключа в лампочке выделяется энергия. Но откуда эта энергия берётся?

Берётся она, ясное дело, из катушки — больше неоткуда. Но что за энергия была запасена в катушке и как вычислить эту энергию? Чтобы понять это, продолжим нашу электромеханическую аналогию между индуктивностью и массой.

Чтобы разогнать тело массы из состояния покоя до скорости , внешняя сила должна совершить работу . Тело приобретает кинетическую энергию, которая равна затраченной работе: .

Чтобы после замыкания цепи ток в катушке индуктивности достиг величины , источник тока должен совершить работу по преодолению вихревого электрического поля, направленного против тока.

Работа источника идёт на создание тока и превращается в энергию магнитного поля созданного тока.

Эта энергия запасается в катушке; именно эта энергия и выделяется потом в лампочке после размыкания ключа (во втором опыте).

Индуктивность служит аналогом массы ; сила тока является очевидным аналогом скорости . Поэтому естественно предположить, что для энергии магнитного поля катушки может иметь место формула, аналогичная выражению для кинетической энергии:

(3)

(тем более, что правая часть данной формулы имеет размерность энергии — проверьте!).

Формула (3) действительно оказывается справедливой. Уметь её выводить пока не обязательно, но если вы знаете, что такое интеграл, то вам не составит труда понять следующие рассуждения.

Пусть в данный момент сила тока через катушку равна . Возьмём малый промежуток времени . В течение этого промежутка приращение силы тока равно ; величина считается настолько малой, что много меньше, чем .

За время по цепи проходит заряд . Вихревое электрическое поле совершает при этом отрицательную работу:

Источник тока совершает такую же по модулю положительную работу (сопротивлением катушки, напомним, мы пренебрегаем, так что вся работа источника совершается против вихревого поля):

Интегрируя это от нуля до , найдем работу источника , которая затрачивается на создание тока :

Эта работа превращается в энергию магнитного поля созданного тока, и мы приходим к формуле (3).

Источник: https://ege-study.ru/ru/ege/materialy/fizika/samoindukciya/

Что такое самоиндукция — объяснение простыми словами

Самоиндукция. Законы индукции. Фейнмановские лекции по физике
«Самоиндукция останавливает рост напряжения в индуктивных цепях». Если ваша работа или увлечение связаны с электричеством вы наверняка слышали подобные высказывания.

На самом деле это явление присуще индуктивным цепям, как в явном виде, например, катушек, так и в неявном, такие как паразитные параметры кабеля.

В этой статье мы простыми словами расскажем о том, что такое самоиндукция и где она применяется.

Определение

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

То есть:

E=dФ/dt,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике.

Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках.

Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ).

Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки.

Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов.

Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей.

Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Источник: https://samelectrik.ru/chto-takoe-samoindukciya.html

Лекция 8 Электромагнитная индукция План лекции 8

Самоиндукция. Законы индукции. Фейнмановские лекции по физике
Работа добавлена на сайт samzan.ru: 2015-07-10

PAGE  221

Курс лекций по физике. Часть II: Электромагнетизм

Лекция 8. Электромагнитная индукция

План лекции

8.1. Явление электромагнитной индукции. Закон Фарадея.

8.2. Индуктивность контура. Самоиндукция.

8.3. Энергия, плотность энергии магнитного поля.

Закон Фарадея

Изложенные ранее экспериментальные факты показывают, что электрические токи создают в окружающем пространстве магнитное поле. Существует и обратное явление: магнитное поле вызывает появление электрических токов.

Это явление было открыто после многочисленных экспериментов М. Фарадеем в 1831 г. и получило название электромагнитной индукции. Суть опытов Фарадея можно проиллюстрировать с помощью рис. 8.1.

Если постоянный магнит вдвигать и выдвигать из проволочной катушки (соленоида), соединенной с гальванометром,  то при дви-

     а                                                                   б

Рис. 8.1

жении магнита гальванометр зафиксирует появление электрического тока в соленоиде и стрелка отклонится. Направление и величина отклонения стрелки и ток в соленоиде зависят от направления и скорости движения магнита.

При смене полюсов магнита направление электрического тока и направление отклонения стрелки изменятся на противоположные. Электрический ток также возникнет, если перемещать соленоид относительно неподвижного магнита.

В следующей серии экспериментов Фарадей установил, что при любом из возможных вариантов опытов: 1) вдвигании (выдвигании) малого соленоида с током в большой соленоид, соединенный с гальванометром, 2) удалении (приближении) одного соленоида к другому, 3) размыкании (замыкании) тока в малом соленоиде, 4) изменении силы тока в нем – в обмотке большого соленоида возникает ток, наличие которого фиксирует гальванометр. Таким образом, было открыто явление электромагнитной индукции – появление электрического тока (названного индукционным) в замкнутом проводящем контуре при любом изменении магнитного потока, сцепленного с этим контуром. Возникновение индукционного тока свидетельствует о наличии в цепи ЭДС, называемой ЭДС электромагнитной индукции .

Фарадей установил, что величина индукционного тока (а значит, и ЭДС индукции) однозначно определяются скоростью изменения магнитного потока. Эта зависимость отражена в законе электромагнитной индукции Фарадея, выведенном Максвеллом: ЭДС электромагнитной индукции численно равна взятой с обратным знаком скорости изменения магнитного потока, сцепленного с рассматриваемым контуром,

.                                 (8.1)

Знак «–» в формуле (8.1) является математическим выражением правила Ленца: индукционный ток в контуре всегда имеет такое направление, при котором создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего этот индукционный ток.

Закон Фарадея можно получить из закона сохранения энергии. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное проводнику, и может свободно перемещаться. Работа по перемещению проводника – , где  – пересеченный проводником магнитный поток.

Если полное сопротивление контура R, то согласно закону сохранения энергии работа источника тока за время  будет складываться из работы, пошедшей на джоулеву теплоту , и работы по перемещению проводника в магнитном поле , т.е.

, откуда , где  и есть ЭДС электромагнитной индукции согласно закону Фарадея.

ЭДС электромагнитной индукции (как и любая ЭДС) должна иметь размерность . Проверим это. Согласно уравнению (8.1):

В качестве примера наиболее широкого практического применения явления электромагнитной индукции рассмотрим принцип действия генератора переменного тока (устройство для преобразования механической энергии в электрическую) на примере плоской рамки, равномерно вращающейся в однородном магнитном поле В = const c угловой скоростью  = const.

Магнитный поток, сцепленный с рамкой площадью S в любой момент времени t, равен , где  – угол поворота рамки в момент времени t (начало отсчета выбрано так, что при t = 0,  = 0).

 При вращении в рамке будет возникать согласно закону Фарадея переменная ЭДС индукции , изменяющаяся со временем по гармоническому закону. При sint = 1,  – максимальна, т.е. .

Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная ЭДС, изменяющаяся по гармоническому закону . , а значит, и  прямо зависят от величин B, S, . В России используется стандартная промышленная частота переменного тока .

Для увеличения  применяют мощные постоянные магниты или в электромагнитах пропускают значительный ток, а также внутрь электромагнита помещают сердечник из материалов с большой магнитной проницаемостью . Если вращать не один, а несколько витков, соединенных последовательно, то тем самым увеличивается S.

Процесс превращения механической энергии в электрическую обратим. Если через рамку, помещенную в магнитное поле, пропустить электрический ток, то на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателя, предназначенного для превращения электрической энергии в механическую.

8.2. Индуктивность контура. Самоиндукция

По закону Био–Савара–Лапласа индукция магнитного поля пропорциональна току, текущему в контуре, т.е. В  I. Магнитный поток пропорционален магнитной индукции, а значит, и току в контуре:

                                    (8.2)

где коэффициент пропорциональности L называется индуктивностью контура. Тогда  и при I = 1 А, L = Ф, т.е. индуктивность контура определяется величиной магнитного потока, сцепленного с контуром, в котором течет единичный ток. Единица индуктивности в СИ – 1 Генри [1 Гн = 1 Вб/1 А].

Индуктивность контура зависит от геометрической формы контура, его размеров и магнитных свойств среды, в которой он находится. В этом смысле индуктивность контура – аналог электроемкости уединенного проводника.

Проиллюстрируем это на примере соленоида. Полный магнитный поток через соленоид

.                                 (8.3)

Если текущий в контуре ток изменяется, будет меняться и сцепленный с ним магнитный ток, а значит, в контуре будет индуцироваться ЭДС, которая в этом случае называется ЭДС самоиндукции , а явление ее возникновения называют самоиндукцией. Применяя к этому явлению закон Фарадея (8.1) и учитывая, что в большинстве реальных ситуаций контур не деформируется и магнитная проницаемость среды не меняется, получим выражение для ЭДС самоиндукции (при условии L = const):

                                (8.4)

Отсюда при ,  и индуктивность L контура численно равна индуцированной в нем ЭДС самоиндукции при условии равенства скорости изменения тока в нем . Размерность  

Выражение (8.4) хорошо иллюстрирует гибкость и вариативность проявления действия правила Ленца. Так, при возрастании тока в контуре  Согласно уравнению (8.4)  т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание.

В обратной ситуации при убывании тока в контуре (т.е. ) согласно выражению (8.4)  0, т.е. индуцированный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание.

Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любые изменения тока тормозятся тем сильнее, чем больше индуктивность контура.

Можно сказать, что роль индуктивности в электрических цепях аналогична роли массы в механике, т.е. индуктивность является мерой электрической инертности. 

В качестве примера рассмотрим выключение тока в цепи, содержащей источник тока с ЭДС , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней ЭДС в цепи течет постоянный ток  (считается, что внутренним сопротивлением источника можно пренебречь).

При t = 0 происходит отключение источника тока, ток начинает уменьшаться, и появляется ЭДС самоиндукции . Мгновенное значение тока (по закону Ома)  или .

Разделив переменные и проинтегрировав правую и левую часть этого уравнения по I (от I0 до I) и по t (от 0 до t), получим  или

.                                   (8.5)

Таким образом, при отключении ЭДС сила тока в цепи убывает по экспоненциальному закону (8.5). Чем больше индуктивность цепи и меньше ее сопротивление, тем медленнее уменьшается ток в цепи при ее размыкании.

Оценим значение ЭДС самоиндукции , возникающей при размыкании цепи постоянного тока, т.е. при мгновенном увеличении сопротивления цепи от R0  до . Если цепь разомкнуть при установившемся токе , то далее ток изменяется в соответствии с уравнением (8.

5)  и при этом текущая ЭДС самоиндукции равна

                     (8.6)

Таким образом, при размыкании цепи и значительном увеличении сопротивления цепи , обладающей большой индуктивностью, ЭДС самоиндукции во много раз превышает ЭДС источника тока, включенного в цепь (из уравнения (8.6) получаем ).

Отсюда вытекает, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (благодаря возникновению значительной ЭДС самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов.

Если в контуре сопротивление выводить постепенно, используя мощные «пусковые» реостаты, то ЭДС самоиндукции не достигнет больших значений. Аналогичное мероприятие необходимо осуществлять и при замыкании цепи постоянного тока.

магнитного поля

Проводник, по которому течет ток, всегда окружен магнитным полем, причем оно появляется и исчезает синхронно с изменением тока. Поэтому естественно предположить, что энергия магнитного поля равна работе, которая  затрачивается  током  на

создание самого поля. Рассмотрим контур индуктивностью L, по которому течет ток I. С контуром сцеплен магнитный поток  и при изменении тока на поток меняется на . Для этого необходимо совершить работу . Конечная работа по созданию магнитного потока  будет равна . Соответственно, энергия магнитного поля, связанного с контуром, равна:

.                                    (8.7)

Энергию магнитного поля логичней представлять как функцию величин, характеризующих это поле и окружающую среду. Преобразуем выражение (8.7), рассмотрев однородное магнитное поле внутри соленоида. Индукция этого магнитного поля , откуда , и, используя выражение , преобразуем уравнение (8.7): , где  – объем соленоида.

Магнитное поле соленоида однородно, сосредоточено внутри него и распределено в нем с постоянной объемной плотностью, равной

        (8.8)

К  началу                 К следующей лекции   

 К содержанию                  К титулу

PAGE  222

Лекция 8. Электромагнитная индукция

Источник: http://samzan.ru/204153

Самоиндукция. Индуктивность. Физика. 11 класс. — Объяснение нового материала

Самоиндукция. Законы индукции. Фейнмановские лекции по физике

Основы электродинамики были заложены Ампером в 1820 году. Работы Ампера вдохновили многих инженеров на конструирование различных технических устройств, таких как электродвигатель (конструктор Б.С. Якоби), телеграф (С. Морзе), электромагнит, конструированием которого занимался известный американский ученый Генри.

Джозеф Генри (рис. 1) прославился благодаря созданию серии уникальных мощнейших электромагнитов с подъемной силой от 30 до 1500 кг при собственной массе магнита 10 кг. Создавая различные электромагниты, в 1832 году ученый открыл новое явление в электромагнетизме – явление самоиндукции.

Рис. 1. Джозеф Генри

Явление самоиндукции

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рисунке 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции.

Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка.

После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (см. Рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (см. Рис. 4).

Рис. 4. Направление тока и магнитного поля направление тока и магнитного поля в витке

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает.

Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток.

По правилу Ленца этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть, для рассматриваемого на рисунке 4 витка индукционный ток должен быть направлен по часовой стрелке, тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно, благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа.

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике. В этом заключается суть явления самоиндукции. Самоиндукция – это частный случай электромагнитной индукции.

Формулы для нахождения потока магнитной индукции и ЭДС самоиндукции

Формула для нахождения магнитной индукции:

,

где  – магнитная индукция;  – магнитная проницаемость вакуума; I – сила тока; r – радиус катушки.

Поток магнитной индукции через площадку равен:

,

где S – площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой N – число витков, а l – длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N, равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом n:

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

 – Генри

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Основные выводы

Самоиндукция – это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью, которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

К занятию прикреплен файл  «!». Вы можете скачать файл  в любое удобное для вас время.

Использованные источники:

  • http://www.umnik-umnica.com/ru/school/physics/11-klass/
  • http://www..com/watch?v=qmPy2nVEctE
  • http://www..com/watch?v=jBr3PWMqCBk

Источник: https://www.kursoteka.ru/course/3954/lesson/13293/unit/32348

Самоиндукция. Индуктивность. Энергия магнитного поля тока — Класс!ная физика

Самоиндукция. Законы индукции. Фейнмановские лекции по физике

Если по катушке идет переменный ток, то: магнитный поток, пронизывающий катушку, меняется во времени,

а в катушке возникает ЭДС индукции .

Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке:
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток. В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.

Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике: Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.

Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике: При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.

При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает. В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока. Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.

Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает. Вихревое поле совершает положительную работу. Запасенная током энергия выделяется.

Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Электромагнитное поле. Электродинамический микрофон»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток — Направление индукционного тока. Правило Ленца — Закон электромагнитной индукции — ЭДС индукции в движущихся проводниках. Электродинамический микрофон — Вихревое электрическое поле — Самоиндукция. Индуктивность. Энергия магнитного поля тока — Электромагнитное поле — Примеры решения задач — Краткие итоги главы

Источник: http://class-fizika.ru/11_12.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.