РЕЗОНАНС В ПРИРОДЕ. Резонанс. Фейнмановские лекции по физике

Содержание

Явление резонанса

РЕЗОНАНС В ПРИРОДЕ. Резонанс. Фейнмановские лекции по физике

> Теория > Явление резонанса

Суть явления резонанса (в переводе с латинского – «звучу в ответ» или «откликаюсь») состоит в резком увеличении размаха собственных колебаний, наблюдаемых в структурах, подверженных воздействию внешних факторов. Основное условие его возникновения – совпадение частоты этих внешних по отношению к системе колебаний с её собственными частотными параметрами, вследствие чего они начинают работать «в унисон».

Механический резонанс

Виды резонансных явлений

Наиболее часто резонанс в физике наблюдается при изучении так называемых «линейных» образований, параметры которых не зависят от текущего состояния. Типичным их представителем являются структуры с одной степенью свободы (к ним можно отнести груз, подвешенный на пружинке, или цепь с последовательно включённой индуктивностью и емкостным элементом).

Обратите внимание! В обоих этих случаях предполагается наличие внешнего по отношению к данной системе воздействия (механического или электрического).

Рассмотрим, что такое резонанс, и в чём состоит его суть более подробно.

Механический резонанс

Явление резонанса может наблюдаться в конструкциях со следующим механическим устройством. Допустим, что имеется груз массой M, свободно подвешенный на упругой пружине. На него действует внешняя сила, амплитуда которой меняется по синусоиде:

F = F0 coswt.

Для оценки характера колебаний такой системы необходимо воспользоваться законом Гука, согласно которому обусловленная пружиной сила равна kx, где х – величина отклонения массы M от среднего положения. Коэффициент k описывает внутренние свойства, связанные с её упругостью.

Исходя из этих предположений и после применения несложных математических выкладок, удаётся получить результат, позволяющий сделать следующие выводы:

  • Вынужденные механические колебания относятся к разряду гармонических явлений, имеющих частоту, совпадающую с тем же параметром для внешнего раздражителя;
  • Амплитуда (размах), а также фазовые характеристики механических структур зависят от того, как соотносятся её собственные параметры с характеристиками гармонического воздействия;
  • Когда на линейную систему подавался сигнал или механическое воздействие, меняющееся не по синусоидальному закону, резонансные явления наблюдались лишь в особых ситуациях;
  • Для их появления необходимо, чтобы во внешней подкачке (сигнале) содержались гармонические составляющие, сравнимые с собственной частотой системы.

Каждая из этих составляющих, даже если их обнаружится несколько, будет вызывать свой резонансный отклик. Причём комплексная реакция (согласно суперпозиционному принципу) равняется сумме тех же откликов, наблюдаемых от действия каждой из внешних гармонических составляющих.

Важно! В том случае, когда в таком воздействии совсем не содержится компонентов с близкими частотами, резонанс наступить вообще не сможет.

Для анализа всех компонентов смесей, резонирующих с системными частотами, используется метод Фурье, позволяющий раскладывать сложное колебание произвольной формы на простейшие гармонические составляющие.

Электрический колебательный контур

В электрических цепочках, состоящих из ёмкостной компоненты С и катушки индуктивности L, при наблюдении резонансных явлений нужно различать следующие две отличные по характеристикам ситуации:

  • Последовательное соединение элементов в контуре;
  • Параллельное их включение.

В первом случае при совпадении собственных колебаний с частотой внешнего воздействия (ЭДС), изменяющейся по синусоидальному закону, наблюдаются резкие всплески амплитуды, совпадающие по фазе с внешним источником сигнала.

Последовательный резонанс

При параллельном включении тех же элементов под воздействием внешней гармонической ЭДС проявляется явление «антирезонанса», состоящее в резком снижении амплитуды ЭДС.

Дополнительная информация. Этот эффект, получивший название параллельного (или резонанса токов), объясняется несовпадением фаз собственных и внешних колебаний ЭДС.

На резонансных частотах реактивные сопротивления каждой из параллельных ветвей выравниваются по величине, так что в них протекают примерно одинаковые по амплитуде токи (но они всегда не совпадают по фазе).

Параллельный резонанс

Вследствие этого общий для всей цепи токовый сигнал оказывается на порядок меньше. Указанные свойства прекрасно описывают поведение фильтрующих контуров и цепочек, в которых применение резонанса для электротехнических нужд выражено очень наглядно.

Сложные колебательные структуры

В системах с линейными характеристиками, характеризующихся использованием нескольких (двух в частном случае) контуров, резонансные явления возможны лишь при наличии связи между ними.

Связанные контуры

Для связанных контуров справедливы следующие правила:

  • Они сохраняют все основные свойства одноконтурных линейных структур;
  • В таких контурах возможны колебания на двух резонансных частотах, называемых нормальными;
  • Если принудительное воздействие по частоте не совпадает ни с одной из них, при плавном её изменении «отклик» в системе будет наступать последовательно на каждой;
  • В этом случае его график будет иметь вид слитного или двойного резонанса с тупой вершиной и двумя небольшими всплесками («горбами»);
  • Когда нормальные частоты не сильно отличаются одна от другой и близки к тому же параметру для внешней ЭДС, ответ системы будет иметь тот же вид, но два «горба» практически сольются в один;
  • Форма резонансной кривой в последнем случае будет иметь почти такой же вид, как и при одноконтурном линейном варианте.

В контурах с большим количеством степеней свободы в основном сохраняются те же реакции, что и в системах с двумя параметрами.

Нелинейные системы

Отклик систем, характеристики которых определяются текущим состоянием (их называют нелинейными), имеет более сложную форму и носит характер несимметричных проявлений. Последние зависят от соотношения характеристик сторонних воздействий и частот собственных вынужденных колебаний системы.

Обратите внимание! В этом случае они могут проявляться как дробные части частот, воздействующих на систему колебаний, или в виде кратных им величин.

Примером откликов, наблюдаемых в нелинейных системах, служат так называемые феррорезонансные явления. Они возможны в электрических цепях, в состав которых входит индуктивность с ферромагнитным сердечником, и относятся к разряду структурных.

Последнее объясняется особенностями состава вещества на атомистическом уровне, при исследовании которого обнаруживается, что ферромагнитные структуры представляют собой набор огромного числа элементарных магнитиков (спинов). Каждое из этих состояний при реакции на внешнюю «подкачку» определяется множеством различных факторов, то есть проявляется в технике как нелинейное.

В заключение следует резюмировать, что, независимо от вида исследуемой системы, суть резонансных явлений заключается в наблюдении откликов колебательных структур на прилагаемые к ним внешние воздействия. Тщательное изучение этих физических явлений позволяет получить практические результаты, способствующие внедрению в производство совершенно новых технологий.

Источник: https://elquanta.ru/teoriya/yavlenie-rezonansa.html

Резонанс в физике для

РЕЗОНАНС В ПРИРОДЕ. Резонанс. Фейнмановские лекции по физике

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота».  Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает  вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания и частота

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний — катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения,  звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.

Виды колебаний

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний — это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) — это количество колебаний в единицу времени. 1 Герц — это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.

Резонанс на качелях

Суть явления резонанса

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Египетский мост в Санкт-Петербурге, разрушившийся из-за резонанса.

Примеры резонанса

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным.

Однако струны неспроста устанавливают над корпусом – резонатором.

Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся — круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.

Резонатор гитары

Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от реферата «Сеть интернет и киберпреступность» до курсовой по физике колебаний или эссе по литературе.

Источник: https://Zaochnik.ru/blog/rezonans-v-fizike-dlya-chajnikov/

Явление резонанса: примеры, польза и вред от его воздействия в жизни, методы борьбы с откликом

РЕЗОНАНС В ПРИРОДЕ. Резонанс. Фейнмановские лекции по физике

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Принцип действия

Это явление наблюдается, когда система способна хранить и легко переносить энергию между двумя или более разными режимами хранения, такими как кинетическая и потенциальная энергия.

Однако есть некоторые потери от цикла к циклу, называемые затуханием.

Когда затухание незначительно, резонансная частота приблизительно равна собственной частоте системы, которая представляет собой частоту невынужденных колебаний.

Эти явления происходят со всеми типами колебаний или волн: механические, акустические, электромагнитные, ядерные магнитные (ЯМР), электронные спиновые (ЭПР) и резонанс квантовых волновых функций. Такие системы могут использоваться для генерации вибраций определенной частоты (например, музыкальных инструментов).

Термин «резонанс» (от латинской resonantia, «эхо») происходит от поля акустики, особенно наблюдаемого в музыкальных инструментах, например, когда струны начинают вибрировать и воспроизводить звук без прямого воздействия игроком.

Примеры резонанса в жизни

Толчок человека на качелях является распространенным примером этого явления. Загруженные качели, маятник имеют собственную частоту колебаний и резонансную частоту, которая сопротивляется толканию быстрее или медленнее.

Примером является колебание снарядов на детской площадке, которое действует как маятник.

Нажатие человека во время качания с естественным интервалом колебания приводит к тому, что качели идут все выше и выше (максимальная амплитуда), в то время как попытки делать качание с более быстрым или медленным темпом создают меньшие дуги. Это связано с тем, что энергия, поглощаемая колебаниями, увеличивается, когда толчки соответствуют естественным колебаниям.

Отклик широко встречается в природе и используется во многих искусственных устройствах. Это механизм, посредством которого генерируются практически все синусоидальные волны и вибрации.

Многие звуки, которые мы слышим, например, когда ударяются жесткие предметы из металла, стекла или дерева, вызваны короткими колебаниями в объекте. Легкое и другое коротковолновое электромагнитное излучение создается резонансом в атомном масштабе, таким как электроны в атомах.

Другие условия, в которых могут применяться полезные свойства этого явления:

  • Механизмы хронометража современных часов, колесо баланса в механических часах и кварцевый кристалл в часах.
  • Приливной отклик залива Фанди.
  • Акустические резонансы музыкальных инструментов и человеческого ого тракта.
  • Разрушение хрустального бокала под воздействием музыкального правого тона.
  • Фрикционные идиофоны, такие как изготовление стеклянного предмета (стекла, бутылки, вазы), вибрируют, при потирании вокруг его края кончиком пальца.
  • Электрический отклик настроенных схем в радиостанциях и телевизорах, которые позволяют избирательно принимать радиочастоты.
  • Создание когерентного света оптическим резонансом в лазерной полости.
  • Орбитальный отклик, примером которого являются некоторые луны газовых гигантов Солнечной системы.

Материальные резонансы в атомном масштабе являются основой нескольких спектроскопических методов, которые используются в физике конденсированных сред, например:

  • Электронный спиновой.
  • Эффект Мёссбауэра.
  • Ядерный магнитный.

Типы явления

В описании резонанса Г. Галилей как раз обратил внимание на самое существенное — на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы.

Механический и акустический

Механический резонанс — это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы.

Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты.

При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн.

Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения.

Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами».

Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка.

Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

В космической механике возникает орбитальный отклик, когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга.

Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел.

В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном.

Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна.

Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР) — это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле.

Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Польза и вред резонанса

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Положительный эффект

Явление отклика широко используется в науке и технике. Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

  • Двухтактный двигатель. Глушитель двухтактного двигателя имеет особую форму, рассчитанную на создание резонансного явления. Оно улучшает работу двигателя засчет снижения потребления и загрязнения. Этот резонанс частично уменьшает несгоревшие газы и увеличивает сжатие в цилиндре.
  • Музыкальные инструменты. В случае струнных и духовых инструментов звуковое производство происходит в основном при возбуждении колебательной системы (струны, колонны воздуха) до возникновения явления резонанса.
  • Радиоприемники. Каждая радиостанция излучает электромагнитную волну с четко определенной частотой. Для его захвата цепь RLC принудительно подвергается вибрации с помощью антенны, которая захватывает все электромагнитные волны, достигающие ее. Для прослушивания одной станции собственная частота RLC-схемы должна быть настроена на частоту требуемого передатчика, изменяя емкость переменного конденсатора (операция выполняется при нажатии кнопки поиска станции). Все системы радиосвязи, будь то передатчики или приемники, используют резонаторы для «фильтрации» частот сигналов, которые они обрабатывают.
  • Магнитно-резонансная томография (МРТ). В 1946 году два американца Феликс Блох и Эдвард Миллс Перселл самостоятельно обнаружили явление ядерного магнитного резонанса, также называемое ЯМР, которое принесло им Нобелевскую премию по физике.

Отрицательное воздействие

Однако не всегда явление полезно. Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

  • Автотранспорт. Автомобилисты часто раздражаются шумом, который появляется при определенной скорости движения транспортного средства или в результате работы двигателя. Некоторые слабо закругленные части корпуса вступают в резонанс и излучают звуковые колебания. Сам автомобиль с его системой подвески представляет собой осциллятор, оснащенный эффективными амортизаторами, которые препятствуют возникновению острого резонанса.
  • Мосты. Мост может выполнять вертикальные и поперечные колебания. Каждый из этих типов колебаний имеет свой период. Если стропы подвешены, система имеет очень разную резонансную частоту.
  • Здания. Высокие здания чувствительны к землетрясениям. Некоторые пассивные устройства позволяют защитить их: они являются осцилляторами, чья собственная частота близка к частоте самого здания. Таким образом, энергия полностью поглощается маятником, препятствующим разрушению здания.

Борьба с резонансом

Но несмотря на иногда губительные последствия эффекта отклика с ним вполне можно и нужно бороться. Чтобы избежать нежелательного возникновения этого явления, обычно используют два способа одновременного применения резонанса и борьбы с ним:

  1. Производится «разобщение» частот, которые в случае совпадения приведут к нежелательным последствиям. Для этого повышают трение различных механизмов или меняют собственную частоту колебаний системы.
  2. Увеличивают затухание колебаний, например, ставят двигатель на резиновую подкладку или пружины.

Источник: https://chebo.pro/tehnologii/teoriya-vozniknoveniya-rezonansa-ego-primenenie-v-zhizni.html

Явление резонанса и его возникновение. Примеры резонанса в механике, акустике, электрических цепях и атомах молекул

РЕЗОНАНС В ПРИРОДЕ. Резонанс. Фейнмановские лекции по физике

Под явлением резонанса стоит понимать мгновенный рост величины амплитуды колебаний объекта под воздействием внешнего источника энергии периодического характера воздействия с аналогичным значением частоты.

В статье мы рассмотрим природу возникновения резонанса на примере механического (математического) маятника, электрического колебательного контура и ядерного магнитного резонатора.

Для того, чтобы проще представить физические процессы, статья сопровождается многочисленными вставками в виде практических примеров.

Цель статьи — объяснить на примитивном уровне явление резонанса в разных областях его возникновения без математических формул.

Механические колебания маятника

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные.

Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия.

Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, — время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку».

Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом.

Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом.

Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт.

Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Простые примеры резонанса из жизни

Начнем с примера возникновения резонанса с которым сталкивался каждый из нас — это обычные качели на детской площадке.

Резонанс качелей

В ситуации с детскими качелями в момент приложения рукой силы при прохождения одной из двух симметричных высших точек возникает скачек амплитуды с соответствующим ростом энергии колебания. В быту явление резонанса могли наблюдать в ванной комнате любители вокала.

Звуковой акустический резонанс при пении в ванной

Каждый из поющих в ванной комнате из кафеля наверняка замечал как изменяется звук. Звуковые волны отражаясь о кафель в замкнутом пространстве ванной становятся громче и продолжительнее. Но этому воздействию подвержены не все ноты песни вокалиста, а лишь те, которые резонируют в один такт со звуковой резонансной частотой воздуха.

Для каждого из вышеперечисленного случая возникновения резонанса существует внешняя возбуждающая энергия: в случае с качелями элементарный толчок рукой, совпадающий с фазой колебания качели, и в случае с акустическим эффектом в ванной — голос человека, отдельные частоты которого совпадали с определенными частотами воздуха.

Звуковой резонанс бокала — опыт в домашних условиях

Данный опыт можно провести в домашних условиях. Для него необходим хрустальный бокал и закрытое помещение без посторонних шумов для чуткого восприятия аккустического эффекта.

Смоченный водой палец передвигаем по краю бокала с «рваными» периодическими ускорениями. В процессе подобных движений вы можете наблюдать возникновение звенящего звука.

Данный эффект возникает вследствие передачи энергии движения, частота колебание которой совпадает с собственными частотой колебания бокала.

На видео автор ролика передвигает смоченный палец с равномерной скоростью по окружноси бокала, наполовину наполненного водой. Возникает эффект «поющего бокала».

Разрушение мостов вследствие резонанса — случай с Такомским мостом

Все служившие в армии помнят, как при прохождении строем по мосту от командира звучала команда: «Отставить в ногу!».

Почему же нельзя было проходить строем по мосту «в ногу»? Оказывается, при прохождении строем по мосту с одновременным поднятием выпрямленной ноги до уровня колена военнослужащие опускают плоскость подошвы в один такт с усилием, которое сопровождается характерным шлепком.

Шаг военнослужащих сливается в один единый такт, создавая скачкообразную внешнюю прикладываемую энергию для моста с определенной величиной колебаний. В случае если собственная частота колебаний моста совпадет с колебанием шага солдат «в ногу» — произойдет резонанс, энергия которого может привести к разрушительным воздействиям конструкции моста.

Хотя случаи полного разрушения моста и не зафиксированы при прохождении солдат «в ногу», но известнее случай разрушения Такомского моста через пролив Такома-Нэрроуз в штате Вашингтон США в 1940 году.

Одна из причин вероятных причин разрушения — механический резонанс, который возник вследствие совпадения частоты ветрового потока с внутренней собственной частотой моста.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества.

Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура.

Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур, может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием внешнего источника электроэнергии.

Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура.

Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения.

Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника.

Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения — настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Ядерный магнитный резонанс

Отдельные виды атомов содержат ядра, которые можно сравнить с миниатюрными магнитами.

Под влиянием мощного внешнего магнитного поля ядра атомов меняют свою ориентацию в соответствии со взаимным расположением своего собственного магнитного поля по отношению к внешнему.

Внешний сильный электромагнитный импульс поглощается атомом вследствие чего происходит его переориентация. Как только источник импульса прекращает свое действие ядра возвращаются на свои исходные позиции.

Ядра в зависимости от принадлежности к тому или иному атому способны принимать энергию в определенном диапазоне частот. Смена позиции ядра происходит в один такт с внешним колебаниям электромагнитного поля, что и служит причиной возникновения так называемого ядерного магнитного резонанса (сокращенно ЯМР).

В научном мире этот вид резонанса используется в целях изучения атомных связей в рамках сложных молекул. Используемый в медицине метод отображения магнитного резонанса (ОМР) позволяет выводить результаты сканирования внутренних человеческих органов на дисплей для постановки диагноза и назначения лечения.

Магнитное поле ОМР сканера, формируемое при помощи катушек индуктивности, создает излучение высокой частоты под воздействием которого ядра атомов водорода изменяют свою ориентацию при условии совпадении своих собственных частот с внешним. В результате полученных данных с датчиков формируется графическая картинка на мониторе.

Если сравнивать метод ЯМР и ОМР относительно негативного влияния на организм человека излучения, то сканирование с помощью ядерного магнитного резонатора менее вредно, чем ОМР. Также при исследовании мягких тканей технология ЯМР показала большую эффективность в отражении детализации исследуемого участка ткани.

Что такое спектрография

Взаимная связь между атомами в молекуле не строго жесткая, при изменении которой молекула переходит в состояние колебания. Частота колебаний взаимных связей атомов меняет соответственно резонансную частоту молекул.

С помощью излучения электромагнитных волн в ИК спектре можно вызвать вышеуказанные колебания атомных связей.

Данный метод под названием инфракрасная спектрография используется в научных лабораториях для изучения состава исследуемого материала.

Источник: http://www.sciencedebate2008.com/yavleniye-rezonansa-i-yego-vozniknoveniye-primery-rezonansa/

Лучший пример резонанса, объясняющий его суть

РЕЗОНАНС В ПРИРОДЕ. Резонанс. Фейнмановские лекции по физике

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают равномерного движения из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда — это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота — это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы «качели-ребенок».

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения подвесных качелей. То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса — это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота вынужденных колебаний и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент амплитуда колебаний достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку.

Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх).

Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса.

Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед.

Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой свободных колебаний моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю.

Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей силой упругости трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия — эфы, сквозь которые резонанс выводится наружу.

Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Источник: http://fb.ru/article/280153/luchshiy-primer-rezonansa-obyyasnyayuschiy-ego-sut

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.