December 03 2016 15:38:06
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Предмет классической электродинамики
Электродинамика

План лекции

  1. Введение. Предмет классической электродинамики.

  2. Из истории электродинамики.

  3. Электродинамика и научно-технический прогресс.

  4. Электрические заряды.

  5. Свойства электрических зарядов.

  6. Закон Кулона.

  7. Электрическое поле.

  8. Идеи близко – и дальнодействия.

  9. Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей.

  10. Принцип суперпозиции электрических полей.

  11. Поле диполя.

  12. Поле бесконечной заряженной нити.

  13. Введение. Предмет классической электродинамики

  14. Из истории электродинамики

Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Однако, «наблюдать» ещё не значит «исследовать».

Первые научные шаги в изучении электричества и магнетизма были сделаны только в конце 16 века врачом английской королевы Елизаветы Уильямом Гильбертом (1540 – 1603). В своей монографии «О магните, магнитных телах и о большом магните — Земля», Гильберт впервые ввёл понятие «магнитное поле Земли»… Экспериментируя с различными материалами, он обнаружил, что свойством притягивать легкие предметы обладает не только янтарь, потёртый о шёлк, но и многие другие тела: алмаз, хрусталь, смола, сера и т.д. Эти вещества он назвал «электрические», то есть «как янтарь». Так возник термин «электричество».

Первую теорию электрических явлений попытался создать французский исследователь Шарль Дюфэ (1698 – 1739). Он установил, что существует электричество двух родов: «Один род, — писал он, — я назвал «стеклянным» электричеством, другой — «смоляным». Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное…» (1733 г.).

Дальнейшее развитие теория электричества получила в работах американского учённого Бенджамина Франклина (1706 – 1790). Он ввёл понятие «положительное» и «отрицательное» электричество, установил закон сохранения электрического заряда, исследовал «атмосферное электричество», предложил идею громоотвода. Целый ряд созданных им экспериментальных установок стали классикой и уже более 200 лет украшают физические лаборатории учебных заведений (например, «колесо Франклина»).

В 1785 году французский исследователь Шарль Кулон (1736 – 1806) экспериментально установил закон взаимодействия неподвижных электрических зарядов и позднее — магнитных полюсов. Закон Кулона — фундамент электростатики. Он позволил, наконец-то, установить единицу измерения электрического заряда и магнитных масс. Открытие этого закона стимулировало разработку математической теории электрических и магнитных явлений.

Впрочем, долгое время (ещё со времён Гильберта) считалось, что электричество и магнетизм не имеют ничего общего. Только в 1820 году датчанин Ганс Эрстед (1777 – 1851) обнаружил влияние электрического тока на магнитную стрелку, которое он объяснил тем, что «вокруг проволоки с током образуется магнитный вихрь». Иными словами Эрстед установил, что электрический ток является источником магнитного поля. Это положение стало первым из двух основных законов электродинамики. Второе было установлено экспериментально английским физиком Майклом Фарадеем (1791 – 1867). В 1831 году он впервые наблюдал явление «магнитоэлектрической индукции», когда в проводящем контуре возникал индукционный электрический ток при изменении магнитного потока, пронизывающего этот контур.

В конце 19-го столетия разрозненные результаты исследований электромагнитных явлений обобщил молодой шотландский физик Джемс Кларк Максвелл (1831 – 1879). Он создал классическую теорию электродинамики, в которой в частности предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, вычислил объемную плотность энергии электромагнитной волны, рассчитал давление, которое должна производить электромагнитная волна при падении на поглощающую поверхность.

Выводы теории Максвелла нашли экспериментальное подтверждение в работах Генриха Герца (1857 – 1894), П.Н. Лебедева (1866 – 1912). А.А. Майкельсона (1852 – 1931), А.С. Попова (1859 – 1906) и многих других исследователей.

Максвелловская теория электромагнитного поля является фундаментальным обобщением электродинамики, поэтому она по праву занимает почётное место в ряду величайших научных достижений человечества, таких как классическая механика, релятивистская физика и квантовая механика.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.06 секунд 4,191,132 уникальных посетителей