December 03 2016 02:21:28
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Потенциал электростатического поля
Электродинамика

План лекции

3.1. Работа сил электростатического поля при перемещении заряда. Потенциал и разность потенциалов.

3.2. Теорема о циркуляции вектора напряжённости электростатического поля.

3.3. Связь напряжённости и потенциала электростатического поля.

3.4. Примеры расчёта потенциала электростатического поля.

3.4.1. Потенциал поля точечного заряда.

3.4.2. Разность потенциалов на обкладках сферического конденсатора.


Существуют две характеристики электрического поля. В любой точке пространства поле можно задать либо вектором напряжённости — это «силовая» характеристика поля, либо потенциалом — это его энергетическая характеристика.

Потенциал — энергетическая характеристика поля, связанная и с энергией заряда в электростатическом поле и с работой, совершаемой электрической силой при перемещении заряда.

Рассмотрим произвольное перемещение (1–а–2) заряда q в электростатическом поле. Пусть поле создаётся неподвижным точечным зарядом Q (рис. 3.1.). В процессе перемещения на заряд q действует кулоновская сила:

                    img0109.                       (3.1)


Рис. 3.1.

Её работа на перемещении img0110 равна:

               img0111.                  (3.2)

Здесь dr = dlсos — толщина сферической оболочки, окружающей заряд Q. Полная работа электрической силы равна сумме работ на всех участках траектории:

                    img0112.                       (3.3)

Теперь несложно показать, что эта работа не зависит от формы траектории и остаётся неизменной, если начальная и конечная точки траектории не меняют своего положения. Рассмотрим, например, перемещение того же заряда q из начальной точки 1 в конечную 2 по новой траектории 1–b–2. При преодолении прежнего сферического слоя на перемещении img0113 электрическая сила совершит работу:

               img0114.                  (3.4)

Но ведь эта работа в точности совпадает с работой на перемещении dl (3.2) по первоначальной траектории 1–а–2.

Полная работа, равная сумме элементарных работ на всех участках новой траектории, будет равна работе электрической силы на траектории 1–а–2:

                    img0115.                  (3.5)

Вспомним, что силы, работа которых не зависит от вида траектории и определяется только положением её начальной и конечной точек, называются консервативными.

Мы пришли к выводу, что кулоновская сила консервативна. Впрочем, ничего неожиданного в этом выводе нет: ведь сила взаимодействия двух точечных зарядов может быть отнесена к классу центральных сил, а все центральные силы, как было установлено в механике, консервативны.

Итак, вычислим работу кулоновской силы при перемещении заряда q из точки 1 в положение 2 (по любой траектории):

img0116              (3.6)

Как и следовало ожидать, величина работы никак не связана с видом траектории. Она зависит только от положения её начальной (r1) и конечной (r2) точек.

В механике было показано, что работа консервативной силы равна убыли потенциальной энергии системы:

                    img0117.                       (3.7)

Присмотримся внимательнее к результату (3.6):

img0118.

Сопоставив этот результат с теоремой о работе консервативной силы (3.7), запишем уравнение:

img0119,

из которого следует, что потенциальная энергия системы:

                    img0120+ const.                (3.9)

Это потенциальная энергия системы двух точечных зарядов, или, что то же самое, энергия заряда q в электрическом поле точечного заряда Q.

Константа в выражении (3.9) принимается обычно равной нулю. Это означает, что принимается равной нулю энергия взаимодействия зарядов q и Q на бесконечном удалении их друг от друга (при r = ∞).Тогда на расстоянии r  энергия взаимодействия равна                                             img0121.                              (3.10)

Потенциальная энергия заряженной частицы в электрическом поле зависит, таким образом, от величины заряда q и от его положения в поле относительно заряда Q, создающего поле.

Энергия единичного (q = 1) точечного заряда уже не будет связана с величиной этого пробного заряда q и может быть принята в качестве энергетической характеристики данной точки электростатического поля:

img0122.

Эта энергетическая характеристика поля получила название потенциал — j.

Потенциал произвольной точки электростатического поля равен энергии единичного положительного заряда, помещённого в эту точку.

Можно придать потенциалу и иной физический смысл.

Поместим заряд q в поле точечного заряда Q. Первоначально расстояние между зарядами — r. Отпустим заряд q. Под действием электрической силы отталкивания заряд q удалится в бесконечность (рис. 3.2.). На этом перемещении кулоновская сила совершит работу:

img0123.   (3.11)

Эта работа не зависит от формы траектории, поэтому мы её вычислили, считая, что заряд q удаляется по радиусу.


Рис. 3.2.

Сравнивая (3.10) и (3.11), заключаем, что:

                    img0124.                  (3.12)

Потенциал некоторой точки электростатического поля равен работе, совершаемой электрической силой при эвакуации единичного положительного заряда из этой точки в бесконечность.

Теперь вычислим потенциал поля, созданного системой точечных зарядов Q1, Q2, …, QN.

При перемещении заряда q из точки 1 в бесконечность электрическая сила совершит работу, равную алгебраической сумме работ сил, действующих на движущийся заряд со стороны зарядов Q1, Q2, …, QN (рис. 3.3.):

img0125


Рис. 3.3.

Согласно (3.12) работа каждой силы равна:

                         img0126.                  (3.13)

Здесь img0127 — потенциал поля, создаваемого в точке 1 зарядом Qi.

Таким образом, суммарная работа равна:

img0128,

где img0129.

Потенциал поля, созданного системой точечных зарядов, равен алгебраической сумме потенциалов, создаваемых в рассматриваемой точке каждым из зарядов в отдельности:

                         img0130.                            (3.14)

Результат (3.14) известен как «принцип суперпозиции для потенциала». Это очень важный вывод, позволяющий использовать понятие потенциала не только для характеристики полей точечных зарядов, но и для любых произвольных электростатических полей.

Ещё раз обратимся к вычислению работы электрической силы при перемещении заряда q из точки 1 теперь уже произвольного электростатического поля в бесконечность. Поскольку эта работа не зависит от формы траектории, унося заряд в бесконечность, пройдём предварительно точку 2 электростатического поля (рис. 3.4.).


Рис. 3.4.

Ясно, что вся работа на этом перемещении складывается из двух частей:

img0131.

Разделив это равенство на величину переносимого заряда q, получим:

img0132,

или:

               img0133.             (3.15)

Здесь img0134разность потенциалов двух точек поля. Она равна работе, совершаемой электрической силой при перемещении единичного заряда из первой точки во вторую:

                    img0135.                       (3.16)

Таким образом, зная разность потенциалов двух точек поля, легко вычислить работу электрического поля, совершаемую при перемещении заряда q между этими точками:

                    img0136.                  (3.17)

В международной системе единиц СИ потенциал (и разность потенциалов) измеряется в вольтах:

img0137 img0138.

Разность потенциалов двух точек электростатического поля равна одному вольту, если при переносе заряда q = 1Кл между этими точками, электрическая сила совершает работу А(Fэл.) = 1 Дж.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.05 секунд 4,189,909 уникальных посетителей