 Обкладками сферического конденсатора являются две концентрические сферы (R1 и R2). Сообщим этим поверхностям одинаковые по величине, но разноимённые заряды +q и –q и вычислим электрическое поле, создаваемое этими зарядами в пространстве (рис. 2.10.).
Сферы делят пространство на 3 области:
I — внутри первой
сферы (r1 < R1),
II — между обкладками (R1 £ r2 < R2),
III — за пределами конденсатора (r3 > R2).

Рис. 2.10.
Область I.
Выберем замкнутую гауссову поверхность внутри первой области. Разумно, руководствуясь соображениями симметрии, эту поверхность выбрать сферической (r1).
Поток вектора напряжённости через эту поверхность (по определению потока) равен:

Этот поток, согласно теореме Гаусса, пропорционален заряду, заключённому внутри поверхности. Но внутри сферы радиуса r1 заряд отсутствует. Поэтому и поток равен нулю
(!)
Отсюда заключаем, что в области I поле равно нулю
0 < r < R1, E = 0 (2.18)
Область II.
Вновь в качестве замкнутой поверхности выберем сферу, но теперь её радиус r2 лежит в пределах от R1 до R2.
Вычислим поток вектора напряжённости поля через эту гауссову поверхность.

Воспользуемся теорией Гаусса: :

Оказывается, что электрическое поле между обкладками сферического конденсатора неотличимо от поля точечного заряда
. (2.19)
Посмотрим теперь, как выглядит поле в области III.
Вновь выберем замкнутую гауссову сферическую поверхность (радиус r3 > R2). Вычисляем поток вектора напряжённости

Этот поток равен нулю, так как он пропорционален алгебраической сумме зарядов, заключённых внутри этой поверхности. Но алгебраическая сумма одинаковых разноимённых зарядов равна нулю

Отсюда следует, что Е = 0 (r3 ³ R2)/
График Е = Е(r) приведён на рисунке 2.11.
Рис. 2.11.
|