Общий случай умножения на (10n-1). Техника быстрого счета. Быстрый устный счет

Содержание

5 мощных ускорителей устного счета

Общий случай умножения на (10n-1). Техника быстрого счета. Быстрый устный счет

В устном счете, как и везде, есть свои хитрости, и чтобы научиться быстрее считать нужно, знать эти хитрости и уметь применять на практике.

Сегодня мы этим и займемся!

Рассмотрим три случайных примера:

Если считать в уме обычным способом, то возникают затруднения, ведь вычитаемое число больше чем вторая цифра в первом числе и начинаются затруднения и торможения с запоминанием остатка.

Типа 25 – 7 = (20 + 5) – (5- 2) = 20 – 2 = (10 + 10) – 2 = 10 + 8 = 18

Согласитесь, что такие операции сложно проворачивать в голове.

Но есть более простой способ:

25 – 7 = 25 – 10 + 3, так как -7 = -10 + 3

Намного проще вычесть из числа 10 и прибавить 3, чем городить сложные вычисления.

Оптимизируем вычитаемые числа:

  1. Вычесть 7 = вычесть 10 прибавить 3
  2. Вычесть 8 = вычесть 10 прибавить 2
  3. Вычесть 9 = вычесть 10 прибавить 1

Итого получим:

  1. 25 – 10 + 3 =
  2. 34 – 10 + 2 =
  3. 77 – 10 + 1 =

Вот теперь намного интересней и проще!

Посчитайте сейчас представленные ниже примеры этим способом:

  1. 91 – 7 =
  2. 23 – 6 =
  3. 24 – 5 =
  4. 46 – 8 =
  5. 13 – 7 =
  6. 64 – 6 =
  7. 72 – 19 =
  8. 83 – 56 =
  9. 47 – 29 =

2. Как быстро умножать на 4, 8 и 16

В случае умножения мы тоже разбиваем числа на более простые, например:

4 * 8 = ?

Если помните таблицу умножения, то все просто. А если нет?

Тогда нужно упростить операцию:

Наибольшее число ставим первым, а второе раскладываем на более простые:

8 * 4 = 8 * 2 * 2 = ?

Удваивать числа гораздо легче, нежели чем учетверять или увосьмирять их.

Получаем:

8 * 4 = 8 * 2 * 2 = 16 * 2 = 32

Возьмем следующие примеры:

  1. 780 / 5 = ?
  2. 565 / 5 = ?
  3. 235 / 5 = ?

Деление и умножение с числом 5 всегда очень простые и приятные, ведь пять это половина от десяти.

И как их быстро решить?

Легко!

  1. 780 / 10 * 2 = 78 * 2 = 156
  2. 565 /10 * 2 = 56,5 * 2 = 113
  3. 235 / 10 * 2 = 23,5 *2 = 47

Для того чтобы проработать этот способ решите следующие примеры:

  1. 300 / 5 =
  2. 120 / 5 =
  3. 495 / 5 =
  4. 145 / 5 =
  5. 990 / 5 =
  6. 555 / 5 =
  7. 350 / 5 =
  8. 760 / 5 =
  9. 865 / 5 =
  10. 1270 / 5 =
  11. 2425 / 5 =
  12. 9425 / 5 =

4. Умножение на однозначные числа

С умножением немного сложнее, но не сильно, как бы Вы решили следующие примеры?

  1. 56 * 3 = ?
  2. 122 * 7 = ?
  3. 523 * 6 = ?

Без специальных фишек решать их не очень приятно, но благодаря методу «Разделяй и властвуй» мы можем сосчитать их гораздо быстрее:

  1. 56 * 3 = (50 + 6)3 = 503 + 6*3 = ?
  2. 122 * 7 = (100 + 20 + 2)7 = 1007 + 207 + 27 = ?
  3. 523 * 6 = (500 + 20 + 3)6 = 5006 + 206 + 36 =?

Нам остается только перемножить однозначные числа, некоторые из которых с нулями и сложить полученные результаты.

Для проработки этой техники решите следующие примеры:

  1. 123 * 4 =
  2. 236 * 3 =
  3. 154 * 4 =
  4. 490 * 2 =
  5. 145 * 5 =
  6. 990 * 3 =
  7. 555 * 5 =
  8. 433 * 7 =
  9. 132 * 9 =
  10. 766 * 2 =
  11. 865 * 5 =
  12. 1270 * 4 =
  13. 2425 * 3 =
  14. 9425 * 2 =

  15. Делимость числа на 2, 3, 4, 5, 6 и 9

Проверьте числа: 523, 221, 232

Число делится на 3, если сумма его цифр делится на 3.

Например, возьмем число 732, представим его как 7 + 3 + 2 = 12. 12 делится на 3, а значит, число 372 делится на 3.

Проверьте, какие из следующих чисел делятся на 3:

12, 24, 71, 63, 234, 124, 123, 444, 2422, 4243, 53253, 4234, 657, 9754

Число делится на 4, если число, состоящее из последних двух его цифр, делится на 4.

Например, 1729. Последние две цифры образуют 20, которое делится на 4.

Проверьте, какие из следующих чисел делятся на 4:

20, 24, 16, 34, 54, 45, 64, 124, 2024, 3056, 5432, 6872, 9865, 1242, 2354

Число делится на 5, если его последняя цифра 0 или 5.

Проверьте, какие из следующих чисел делятся на 5 (самое легкое упражнение):

3, 5, 10, 15, 21, 23, 56, 25, 40, 655, 720, 4032, 14340, 42343, 2340, 243240

Число делится на 6, если оно делится и на 2 и на 3.

Проверьте, какие из следующих чисел делятся на 6:

22, 36, 72, 12, 34, 24, 16, 26, 122, 76, 86, 56, 46, 126, 124

Число делится на 9, если сумма его цифр, делится на 9.

Например, возьмем число 6732, представим его как 6 + 7 + 3 + 2 = 18. 18 делится на 9, а значит, число 6732 делится на 9.

Проверьте, какие из следующих чисел делятся на 9:

9, 16, 18, 21, 26, 29, 81, 63, 45, 27, 127, 99, 399, 699, 299, 49

Игра «Быстрое сложение»

  1. Ускоряет устный счет
  2. Тренирует внимание
  3. Развивает творческое мышление

Отличный тренажер для развития быстрого счета. На экране дана таблица 4х4, а над ней показаны числа. Самое большое число нужно собрать в таблице. Для этого нажмите мышкой на два числа, сумма которых равна этому числу. Например, 15+10 = 25.

Играть сейчас

Игра «Быстрый счет»

Игра «быстрый счет» поможет вам усовершенствовать свое мышление. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Играть сейчас

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память. суть игры надо выбрать математический знак, чтобы равенство было верным.

На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку.

Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра «Упрощение»

Игра «Упрощение» развивает мышление и память. суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Задание на сегодня

Решить все примеры и тренироваться минимум 10 минут в игре Быстрое сложение.

Очень важно отработать все задания этого урока. Чем лучше Вы будете выполнять задания, тем больше будет пользы. Если Вы чувствуете, что Вам мало заданий — можете сами составлять себе примеры и решать их и тренироваться в математические развивающие игры.

Урок взят из курса «Устный счет за 30 дней»

Научитесь быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. Научу использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Записаться на курсПодробнее

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее.

С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля.

Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Источник: https://cepia.ru/math/uskorenie-ustnogo-scheta

Быстрый счет в уме: методика обучения

Общий случай умножения на (10n-1). Техника быстрого счета. Быстрый устный счет

Умение быстро анализировать ситуацию, просчитывать варианты развития и составлять единое изображение реальности — это одно из ключевых умений высокоэффективных людей. Личностное развитие невозможно без интеллектуального, чему способствует быстрый счет в уме. В общем, о технике увеличения скорости мышления мы и поговорим в статье.

Как нас обманывает наш мозг

Исследования в области работы мозга приводят такие данные, в которые сложно поверить. Большая часть населения считает себя куратором мозга. Но это иллюзорное представление. На самом деле мозг уже принял решение за вас и посредством нервных импульсов передал его в сознание.

Мышление человека практически не изучено, составлена лишь малая картина происходящего в мозге. Грубо говоря, наши действия не определяются собственным «Я», хотя и это весьма расплывчатая формулировка. И зная это, можно приступать к изучению техники быстрого счета в уме.

Как эффективнее обучаться

Память дифференцируется на долговременную и краткосрочную, в первом случае знания откладываются в мозг навсегда. А второй вид необходим для зазубривания информации, чтения.

Современный молодой человек — это мультимедийная личность с клиповым мышлением. Отложить данные в долговременной памяти для него крайне сложно, ведь постоянное поступление информации захламляет его «жесткий диск».

Поэтому обучение методике быстрого счета в уме должно происходить в спокойном состоянии, когда человек не отвлекается на внешние раздражители. Иначе через несколько часов он все забудет.

Да, в настоящий момент складывать цифры в уме нет надобности. Для этого придуманы специальные технические средства, но неиспользование мозга приводит к деградации личности.

А стремление к знаниям — это вечность. Такие люди уверены в себе, надеются только на собственные силы, а приобретенные навыки используются по назначению, тем самым обогащая индивида духовно и материально. Быстрый счет в уме развивает в человеке чувство контроля, увеличивает концентрацию внимания.

Способ первый. Для ленивых

Обладатели устройств на платформе Andorod и IOS могут скачать развивающие приложения и игры. Нейробиологи советуют комплексно подходить к быстрому счету в уме. Обучение происходит в несколько этапов, описанных ниже:

  1. Загружаются приложения для развития внимания, концентрации т. п.
  2. Затем пользователь скачивает развивалки для памяти.

В первом действии человек подготавливает свой мозг, так сказать, разогревает его для усиленных занятий. После чего приступает к работе над счетом в уме. Обратите внимание, приложения должны легко регулироваться, как снижение или повышение уровня сложности заданий, так и изменение времени на работу над ним.

Для быстрого старта подобраны задания начального уровня. Сложение и вычитание небольших цифр, например 3 и 10. Техника называется «Опора на десяток».

Порядок действий:

  1. Задавайте вопросы простого характера, типа сколько 3 + 8 или 9 + 1. Ответ: 11 и 10.
  2. Сколько не хватает числу 10, чтобы стать 14? Ответ: 4.
  3. Затем возьмите любое число, к примеру, 9, и узнайте, сколько 2 в этом числе, и при нехватке добавьте недостающие цифры. Ответ: четыре двоек + 1.
  4. Прибавьте число из второго действия (4) к той части, которой недоставало для получения (1) девяти и сложите их. Ответ: 5.

Отточите свой навык до совершенства и только потом приступайте к более сложным тестам.

Способ третий. Многозначные числа

Здесь используются навыки, которые приобретены в школе. Сложение в столбик или в строчку — самое популярное среди школьников и студентов без вычислительных средств. Разберем на примере двух чисел: 1345 и 6789. Для начала дифференцируем их:

  • Число 1234 — состоит из 1000, 200, 30 и 4.
  • А 6789 — из 6000, 700, 80 и 9.

Быстрый счет в уме проходит по следующим действиям:

  1. Изначально складываются однозначные значения, это 4 + 9 = 13.
  2. Складывается 30 + 80 = 110.
  3. Переходим к трехзначным, 700 + 200 = 900.
  4. И затем считаем четырехзначные: 1000 + 6000 = 7000.
  5. Суммируем: 7000 + 900 + 110 + 13 = 8023 и проверяем на калькуляторе.

И более быстрый, но требующий фантазии способ:

  1. Представляем в голове одно число над другим.
  2. Складываем числа, начиная с их конца.
  3. Если 4 + 9 = 13, то откладываем единицу в голове и прибавляем к итоговому значению следующие числа.

На скриншоте этот способ представляется так, в ваших мыслях он должен иметь аналогичную структуру.

Способ четыре. Вычитание

Как и со сложением, вычитание начинается с вводного урока. Внимание человека должно быть сконцентрировано исключительно на подсчете числовых значений. Отвлекаться на посторонние шумы нельзя, иначе ничего не выйдет. На этот раз вычтем из 10 8 и посмотрим, что из этого выйдет:

  1. Для начала узнаем, сколько надо вычесть из десяти, чтобы получить восемь. Ответ: два.
  2. Из десяти вычитаем восемь по частям — для начала эту двойку, а затем остальные числа. И посчитаем, сколько надо раз отнять, чтобы получить ноль. Ответ: пять.
  3. Вычитаем из десяти пятерку. Ответ: пять.
  4. И от восьми отнимаем полученный ответ. Ответ: три.

Первые занятия рекомендуется начинать с маленькими числами. И постепенно увеличивать количество цифр в числе. Быстрый счет в уме для детей происходит по вышеприведенному способу.

Способ пять. Комбинированный

Появился в результате взаимодействия сложения и вычитания. Суть простая, необходимо взять число и начать отнимать от него различные числа или прибавлять с некоторыми реформациями. За исходное принимается число 9, начнем:

  1. От девяти отнимается шесть и одновременно прибавляется четыре. Ответ: семь.
  2. Семь разбивается на составные части, к примеру: 2 + 3 + 2.
  3. И к каждому прибавляется рандомное значение, возьмем 2. Получается, 2 + 2 = 4, 3 + 2 = 5 и 2 + 2 = 4.
  4. Суммируем полученные числа: 4 + 5 + 4 = 13.
  5. Вновь располагаем значение по частям и повторяем действия, используя только вычитание.

А с вычитанием больших чисел ситуация аналогична сложению. Все действия проговаривайте вслух, чтобы работало несколько видов памяти и ускорялся быстрый счет в уме.

За какой период времени можно стать сверхчеловеком?

Основных математических действий четыре:

  1. Вычитание.
  2. Сложение.
  3. Умножение.
  4. Деление.

И все будет зависеть от того, насколько часто человек занимается тренировками мозга. При плодотворной работе в течении 15-20 минут в день заметный результат наступит через два или три месяца.

Для сохранения эффекта скоростного вычисления сверхчеловеку надо будет уделять всего 2-3 минуты в день на повторение пройденного.

А через несколько лет это войдет в привычку, и индивид и замечать не будет, как он считает в уме.

Источник: http://fb.ru/article/376746/byistryiy-schet-v-ume-metodika-obucheniya

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрог…

Общий случай умножения на (10n-1). Техника быстрого счета. Быстрый устный счет

>> Техника быстрого счета

Научиться быстро считать не так уж сложно, а хорошему физику и математику просто необходимо владеть основными приемами быстрого счета. Нижеперечисленные способы быстрого устного счета расчитаны на ум «обычного» человека и не требуют уникальных способностей. Главное — более или менее продолжительная тренировка.

Упрощение сложения и вычитания

Промежуточное приведение к «круглым» числам

Способ «корневых» чисел

Способ «средних» чисел, или сумма арифметической прогрессии

Использование изменения порядка счета

Соединение соседних разрядов

Использование дополнения числа для упрощения вычитания из чисел

Переход от вычитания к сложению

Упрощение умножения и деления

В истории математики известно около 30 общих способов умножения, отличающихся либо схемой записи, либо самим ходом вычисления. Пожалуй, принятый у нас обычный способ умножения является наиболее удобным … для преподавания в младших классах, но отнюдь не лучшим в применении.

Поэтому мы настоятельно советуем освоить тот способ умножения, который индусы называют молниеносным, а греки — «хиазм».

Известно и другое его название — способ Фурье, а в начале века после блестящих выступлений в России «счетчика» Ферроля этот способ именовался не иначе, как способом умножения Ферроля.

Многие из этих названий мало связаны с сутью способа, поэтому позвольте остановиться на его итальянском наименовании — per crocetta, что означает — накрест.

Умножение «крестом»

Умножение «пирамидой»

Способ обращения и сдвига

Способы, учитывающие особенности чисел

Цифры множителя делятся друг на друга

Во множителе встречается цифра, равная сумме двух других цифр множителя

Способ изменения сомножителей

Разложение множителей на слагаемые

Способ дополнений для умножения чисел, близких к 10n; 2*10n; A*10n

Способ дополнений для трех сомножителей

Умножение чисел, сумма единиц которых равна 10 { АС * EG | А > Е; С + G = 10}

{AC*EG | A=E+1; C+G=1O}. Умножение чисел, сумма единиц которых равна 10

Еще варианты

{AC*EG | (A=E) v (C=G) v (A=C) v (E=G)}

Умножение двузначных чисел в случаях, когда оба числа начинаются или оканчиваются цифрой пять или …

Умножение двузначных чисел, оканчивающихся на «1»

Умножение чисел, заключенных между 10 и 20

Умножение на «9» однозначных чисел

Умножение на «9» многозначных чисел

Умножение на 99

Умножение на 999

Общий случай умножения на (10n-1)

Умножение на число, близкое к 10n

Умножение на 11

Деление многозначного числа на число, близкое к 10n

Деление многозначного числа на число, близкое к 10n. Другой способ

Деление с использованием умножения (или деления) делимого и делителя на одно и то же число

Упрощение возведения числа в степень и извлечения из числа корня n-ой степени

К возведению числа в квадрат, естественно, применимы многие уже рассмотренные способы сокращенного умножения. Например, 9982легко вычислить способом дополнений.
Некоторые способы возведения в квадрат (например, А5 * А5) также уже были рассмотрены в предыдущих примерах как частные случаи соответствующих способов умножения.

Возведение в квадрат целого числа А, если известен квадрат предыдущего (А — 1) или последующего (А + 1) числа

Возведение в квадрат целого числа А, если известны числа (А — 2)2или (А + 2)2

Возведение в квадрат чисел, оканчивающихся на 25

Возведение в квадрат чисел, оканчивающихся на 75

Возведение в квадрат трехзначных чисел, оканчивающихся на цифру 5

Возведение в квадрат чисел вида (50 + z)

Возведение в квадрат чисел вида (50 * 10n+ z)

Возведение в квадрат двузначных чисел, число единиц которых больше 5

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат

Извлечение корня высших степеней из чисел, число цифр в которых не превышает значение показателя корня

Проверка правильности выполненных вычислений

Наиболее полная проверка достигается, конечно, повторным выполнением вычисления и обычно другим способом или с помощью выполнения обратного действия над итогом расчетов (сложение можно проверить вычитанием, умножение — делением, извлечение корня — возведением в степень и т.д.). Несмотря на трудоемкость этих способов проверки, ими по необходимости приходится иногда пользоваться при выполнении (проверке) особо ответственных вычислений. Однако следует знать, что при обычных расчетах можно пользоваться заметно более простыми способами проверки.

Проверка вычислений с помощью остатков от деления на 9

Проверка с помощью ОД9 сложения и вычитания

Проверка умножения и деления с помощью ОД9

Проверка с помощью ОД9 возведения числа в степень и извлечения корня n-ой степени

Не выявляемые с помощью ОД9 ошибки

Проверка с помощью ОД11

Границы применения ОД11

Признаки делимости на 7 и на 13

Разное

Фокус «1001 как 7, 13 и 11»

Социальные комментарииCackle

Источник: http://archive.li/UZKZJ

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.