December 03 2016 02:28:18
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
КРИТЕРИИ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ
ОСНОВЫ  ТЕРМОДИНАМИКИ

9.1.     Тепловое равновесие и неравенство Клаузиуса

Как уже отмечалось ранее, полученные в классической феноменологической термодинамике («термостатике») связи между термодинамическими величинами относятся к состояниям термодинамического равновесия или весьма близким к ним (пренебрежимо мало отличающимся от равновесных). Что же касается процессов перехода к состоянию теплового равновесия, то о них до сих пор говорилось только, что изолированная (полностью отключенная от всех внешних влияний) термодинамическая система сама собой идет к состоянию термодинамического равновесия, то есть к выравниванию по всему объему всех интенсивных термодинамических характеристик. Этот опытный факт зафиксирован в той части содержания второго начала термодинамики, которая утверждает, что энтропия любой изолированной термодинамической системы стремится  к максимуму.

Этот критерий термодинамического равновесия (максимальность энтропии) связан с выполнением довольно неудобных для практических приложений условий. Действительно, стремление энтропии к максимуму при приближении термодинамической системы к равновесному состоянию справедливо только для изолированных систем, что, конечно, отнюдь не всегда осуществляется на практике, и, следовательно, этот критерий равновесия для практики не всегда удобен. Поэтому необходимо рассмотреть критерии равновесия для неизолированных термодинамических систем и найти другие (не энтропию) функции состояния термодинамической системы, которые будут стремиться к экстремуму при самопроизвольном переходе к равновесному состоянию термодинамических систем в условиях неизолированности, то есть в условиях наличия силовых, тепловых и вещественных контактов систем с внешними телами.

Неравновесность накладывает определенные ограничения. В феноменологической термодинамике термодинамические функции состояния, уравнения состояния (термические и термодинамические) и даже некоторые термодинамические параметры (например, температура) определены, то есть имеют смысл, только для систем, находящихся в равновесном состоянии. Поэтому следует особо отметить, о чем может идти речь, когда обсуждается состояние системы, не находящейся в состоянии равновесия, а лишь приближающейся к этому состоянию. То есть, следует определиться с пониманием того, что подразумевается под параметрами и функциями состояния в условиях некоторого отклонения от состояния равновесия, а именно, определиться с тем, что мы понимаем под вариациями функций и параметров. Под этим надлежит понимать такие процедуры, выполняемые с термодинамическими системами, при которых на функции и параметры накладываются  определенные ограничения. А именно,  мы будем считать, что рассматриваемую термодинамическую систему всегда можно разделить на квазиизолированные друг от друга области (то есть, энергия взаимодействия частей системы много меньше энергии каждой из частей). В таких случаях термодинамические состояния в подсистемах можно рассматривать как независимые друг от друга и равновесные (небольшие подсистемы быстрее приходят в состояние равновесия, чем вся система). При этом аддитивные функции состояния (например, энергия или энтропия) могут считаться равными сумме функций, найденных для равновесных частей, хотя, конечно, их значения могут отличаться от тех значений, которые они имели бы при установлении общего равновесия во всей системе.

Для получения общих условий равновесия в термодинамических системах воспользуемся неравенством Клаузиуса (5.6), соединяющим в себе первое и второе начало термодинамики (где нас будет интересовать самопроизвольное стремление энтропии к максимуму при стремлении термодинамической системы к равновесию)

        TdS  >  dU + PdV .                      

      Далее мы будем рассматривать гипотетические вариации функций состояния системы, выводящие систему из состояния равновесия. В таких случаях возвратный переход системы при восстановлении равновесия, как полагается, необратим, но для самих таких гипотетических вариаций неравенство Клаузиуса (в результате изменения знаков) дает выражение  

                           - S  >  - ( U + PV) ,

которое превращается в базовое уравнение для выяснения общих условий равновесия

                U + PV - S  >  0.                            (9.1)

Это уравнение есть общее неравенство для вариаций в термодинамических системах. Еще раз подчеркнем, что знак этого неравенства противоположен знаку неравенства Клаузиуса, поскольку здесь речь идет не о действительных изменениях, приводящих систему в равновесие, а о гипотетических вариациях, выводящих систему из состояния термодинамического равновесия.

Эти мысленные эксперименты с термодинамическими системами необходимы нам, чтобы понять, как поведут себя различные функции состояния при небольших отклонениях от равновесия. То есть мы рассматриваем здесь, что стало бы с интересующими нас функциями, если бы система сама собой немного отклонилась от равновесного состояния.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.03 секунд 4,190,001 уникальных посетителей