December 03 2016 02:23:35
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Консервативные и неконсервативные силы
Физические основы механики

Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек.

К классу консервативных относятся, например, гравитационные силы, упругие, силы электростатического взаимодействия.

Вычислим, например, работу, которую совершает сила тяжести при переходах частицы разными путями из положения 1 в положение 2 (рис. 6.2). Если этот переход произошёл по вертикали, то работа силы img367:

                         img368.                  (6.11)

Теперь пусть та же частица переместится из 1 в 2 по пути 1-1’-2. Здесь промежуточная точка 1’ находится на высоте h2.

Рис. 6.2

Полная работа будет складываться из работ силы тяжести на участках 1-1’ и 1’-2:

img369.

Работа силы тяжести на горизонтальном участке 1’-2 равна нулю, так как здесь вектор силы нормален перемещению. Мы вновь получили прежний результат, свидетельствующий о том, что работа силы тяжести не зависит от формы траектории. Этот вывод легко обобщается и на случай произвольной криволинейной траектории, соединяющей начальную и конечную точки пути.

Гравитационная сила, сила упругости, кулоновская сила электростатического взаимодействия относятся к так называемым центральным силам.

Центральными называются силы, направленные к одной и той же точке (либо от неё). Эта точка называется силовым центром. Величина центральной силы зависит только от расстояния до силового центра r (рис. 6.3).

Рис. 6.3

Покажем, что все центральные силы консервативны.

Вычислим работу центральной силы на участке 1-2 произвольной траектории (рис. 6.3).

Элементарная работа силы на участке img370:

img371.

Здесь dSr = dSCosα — проекция вектора перемещения img372 на направление силы img373 (или r). Эта проекция представляет собой изменение расстояния dr до силового центра. Значит:

dA = F(r)dr.

Работа на конечном пути:

img374.

Так как по определению величина центральной силы есть функция только расстояния r, то значение определённого интеграла будет зависеть только от величин r1 и r2, и не будет зависеть от формы траектории.

Можно дать иное определение консервативной силы.

Рассмотрим перемещение частицы из положения 1 в положение 3 под действием консервативной силы img375 (рис. 6.4).

Рис. 6.4

Работа, совершаемая при этом силой img376, не зависит формы от траектории, то есть img377.

Теперь вычислим работу этой же силы на замкнутом пути 1-2-3-4-1. понятно, что её можно представить суммой работ на участках 1-2-3 и 3-4-1

img378img379.

При этом img380.

Отсюда можно заключить, что работа консервативной силы по любому замкнутому пути равна нулю

img381.

Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.05 секунд 4,189,931 уникальных посетителей