Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат.Техника быстрого счета. Быстрый устный счет

Содержание

Квадратный корень. Исчерпывающий гид (2019)

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат.Техника быстрого счета. Быстрый устный счет

Для начала почитай комментарии внизу этой статьи, чтобы понять насколько крутой материал ты сейчас читаешь! )

А теперь давай попробуем разобраться, что это за понятие такое «квадратный корень».

К примеру, перед нами уравнение  .

Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом  ?

Вспомнив таблицу умножения, ты легко дашь ответ:   и   (ведь при перемножении двух отрицательных чисел получается число положительное)!

Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ  .

Давай разберемся с корнем до конца…

СОДЕРЖАНИЕ

Введение понятия арифметического квадратного корня​  Свойства арифметического квадратного корня Извлечение корней из больших чисел Как тебе квадратный корень? Все понятно?

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Для этого нужно нажать CTRL+F5 (на Windows) или Cmd+R (на Mac).

Введение понятия арифметического квадратного корня​

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  .  .

А почему же число   должно быть обязательно неотрицательным?

Например, чему равен  ?

Так-так, попробуем подобрать. Может, три? Проверим:  , а не  .

Может,  ? Опять же, проверяем:  .

Ну что же, не подбирается?

Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

Однако ты наверняка уже заметил, что в определении сказано, что решение квадратного корня из «числа   называется такое неотрицательное число, квадрат которого равен  ».

А в самом начале мы разбирали пример  , подбирали числа, которые можно возвести в квадрат и получить при этом  , ответом были   и  , а тут говорится про какое-то «неотрицательное число»!

Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа.

К примеру,   не равносильно выражению  .

Из   следует, что

 , то есть   или  ;   (не помнишь почему так? Почитай тему про модули!)

А из   следует, что  .

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

В наше квадратное уравнение подходит как  , так и  .

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

А теперь попробуй решить такое уравнение  .

Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля:   – не подходит.

Двигаемся дальше  ;   – меньше трех, тоже отметаем.

А что если  ? Проверим:   – тоже не подходит, т.к. это больше трех.

С отрицательными числами получится такая же история.

И что же теперь делать? Неужели перебор нам ничего не дал?

Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между   и  , а также между   и  .

Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.

И что дальше?

Давай построим график функции   и отметим на нем решения.

Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из  , делов-то!

Ой-ой-ой, выходит, что   Такое число никогда не кончается.

Как же такое запомнить, ведь на экзамене калькулятора не будет!?

Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение.   и   уже сами по себе ответы.

Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной   км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора:  .

Таким образом,  .

Так чему же здесь равно искомое расстояние?

Очевидно, что расстояние не может быть отрицательным, получаем, что  . Корень из двух приблизительно равен  , но, как мы заметили раньше,   -уже является полноценным ответом.

Извлечение корней

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать.

Для этого необходимо знать, по меньшей мере, квадраты чисел от   до  , а также уметь их распознавать.

То есть, тебе необходимо знать, что   в квадрате равно  , а также, наоборот, что   – это   в квадрате.

Первое время в извлечении корня тебе поможет эта таблица.

Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.

Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

Ответы:

Ну как, получилось? Теперь давай посмотрим такие примеры:

Ответы:

 Свойства арифметического квадратного корня

Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

  • умножение;
  • деление;
  • возведение в степень.

Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

СвойствоПример
Корень произведения равен произведению корней:  , если  
Корень из дроби — это корень из числителя и корень из знаменателя: , если  
Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение: , при  

Попробуем решить по несколько примеров на каждое свойство!

Умножение корней

Взглянул еще раз на табличку… И, поехали!

Начнем с простенького:

Минуууточку.   это  , а это значит, что мы можем записать вот так:

Усвоил? Вот тебе следующий:

Корни из получившихся чисел ровно не извлекаются? Не беда – вот тебе такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Теперь полностью самостоятельно:

Ответы: Молодец! Согласись, все очень легко, главное знать таблицу умножения!

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

 , если  .

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

Вот и вся наука. А вот такой пример:

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

Надо просто применить формулу в обратном направлении:

А вот такой примерчик:

Еще ты можешь встретить такое выражение:

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа   – это число, квадратный корень которого равен  .

Так вот, если мы возводим число, квадратный корень которого равен  , в квадрат, то что получаем?

Ну, конечно,  !

Рассмотрим на примерах:

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Забыл?

Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

Ну как, все понятно? Тогда реши самостоятельно примеры:

А вот и ответы:

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

Это совсем легко! 

Допустим, у нас записано число  

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка – корень квадратный из  !

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

 
Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

Реши самостоятельно вот этот пример —  
Справился? Давай смотреть, что у тебя должно получиться:

Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному – рассмотрим, как сравнивать числа, содержащие квадратный корень!

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень?

Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше:   или  ?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!

Т.е. если  , значит,  .

Отсюда твердо делаем вывод, что  . И никто не убедит нас в обратном!

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Что дальше? А дальше раскладываем на множители до самого конца:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

Разве это конец? Не останавливаемся на полпути!

На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:

Вот и все, не так все и страшно, правда?

Получилось  ? Молодец, все верно!

А теперь попробуй вот такой пример решить:

А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Ну что, начнем раскладывать   на множители? Сразу заметим, что можно поделить число на   (вспоминаем признаки делимости):

А теперь, попробуй сам (опять же, без калькулятора!):

Ну что, получилось  ? Молодец, все верно!

Подведем итоги

  1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  .
     .
  2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

  3. Свойства арифметического корня:
    СвойствоПример
    Корень произведения равен произведению корней , если  
    Корень из дроби — это корень из числителя и корень из знаменателя. , если  
    Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при  
  4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

Как тебе квадратный корень? Все понятно?

Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.

Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.

Узнал ты что-то новое или все было и так ясно.

Источник: https://youclever.org/book/kvadratnyj-koren-1

Техника быстрого счета. Быстрый устный счет. Примеры и приемы быстрог…

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат.Техника быстрого счета. Быстрый устный счет

>> Техника быстрого счета

Научиться быстро считать не так уж сложно, а хорошему физику и математику просто необходимо владеть основными приемами быстрого счета. Нижеперечисленные способы быстрого устного счета расчитаны на ум «обычного» человека и не требуют уникальных способностей. Главное — более или менее продолжительная тренировка.

Упрощение сложения и вычитания

Промежуточное приведение к «круглым» числам

Способ «корневых» чисел

Способ «средних» чисел, или сумма арифметической прогрессии

Использование изменения порядка счета

Соединение соседних разрядов

Использование дополнения числа для упрощения вычитания из чисел

Переход от вычитания к сложению

Упрощение умножения и деления

В истории математики известно около 30 общих способов умножения, отличающихся либо схемой записи, либо самим ходом вычисления. Пожалуй, принятый у нас обычный способ умножения является наиболее удобным … для преподавания в младших классах, но отнюдь не лучшим в применении.

Поэтому мы настоятельно советуем освоить тот способ умножения, который индусы называют молниеносным, а греки — «хиазм».

Известно и другое его название — способ Фурье, а в начале века после блестящих выступлений в России «счетчика» Ферроля этот способ именовался не иначе, как способом умножения Ферроля.

Многие из этих названий мало связаны с сутью способа, поэтому позвольте остановиться на его итальянском наименовании — per crocetta, что означает — накрест.

Умножение «крестом»

Умножение «пирамидой»

Способ обращения и сдвига

Способы, учитывающие особенности чисел

Цифры множителя делятся друг на друга

Во множителе встречается цифра, равная сумме двух других цифр множителя

Способ изменения сомножителей

Разложение множителей на слагаемые

Способ дополнений для умножения чисел, близких к 10n; 2*10n; A*10n

Способ дополнений для трех сомножителей

Умножение чисел, сумма единиц которых равна 10 { АС * EG | А > Е; С + G = 10}

{AC*EG | A=E+1; C+G=1O}. Умножение чисел, сумма единиц которых равна 10

Еще варианты

{AC*EG | (A=E) v (C=G) v (A=C) v (E=G)}

Умножение двузначных чисел в случаях, когда оба числа начинаются или оканчиваются цифрой пять или …

Умножение двузначных чисел, оканчивающихся на «1»

Умножение чисел, заключенных между 10 и 20

Умножение на «9» однозначных чисел

Умножение на «9» многозначных чисел

Умножение на 99

Умножение на 999

Общий случай умножения на (10n-1)

Умножение на число, близкое к 10n

Умножение на 11

Деление многозначного числа на число, близкое к 10n

Деление многозначного числа на число, близкое к 10n. Другой способ

Деление с использованием умножения (или деления) делимого и делителя на одно и то же число

Упрощение возведения числа в степень и извлечения из числа корня n-ой степени

К возведению числа в квадрат, естественно, применимы многие уже рассмотренные способы сокращенного умножения. Например, 9982легко вычислить способом дополнений.
Некоторые способы возведения в квадрат (например, А5 * А5) также уже были рассмотрены в предыдущих примерах как частные случаи соответствующих способов умножения.

Возведение в квадрат целого числа А, если известен квадрат предыдущего (А — 1) или последующего (А + 1) числа

Возведение в квадрат целого числа А, если известны числа (А — 2)2или (А + 2)2

Возведение в квадрат чисел, оканчивающихся на 25

Возведение в квадрат чисел, оканчивающихся на 75

Возведение в квадрат трехзначных чисел, оканчивающихся на цифру 5

Возведение в квадрат чисел вида (50 + z)

Возведение в квадрат чисел вида (50 * 10n+ z)

Возведение в квадрат двузначных чисел, число единиц которых больше 5

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат

Извлечение корня высших степеней из чисел, число цифр в которых не превышает значение показателя корня

Проверка правильности выполненных вычислений

Наиболее полная проверка достигается, конечно, повторным выполнением вычисления и обычно другим способом или с помощью выполнения обратного действия над итогом расчетов (сложение можно проверить вычитанием, умножение — делением, извлечение корня — возведением в степень и т.д.). Несмотря на трудоемкость этих способов проверки, ими по необходимости приходится иногда пользоваться при выполнении (проверке) особо ответственных вычислений. Однако следует знать, что при обычных расчетах можно пользоваться заметно более простыми способами проверки.

Проверка вычислений с помощью остатков от деления на 9

Проверка с помощью ОД9 сложения и вычитания

Проверка умножения и деления с помощью ОД9

Проверка с помощью ОД9 возведения числа в степень и извлечения корня n-ой степени

Не выявляемые с помощью ОД9 ошибки

Проверка с помощью ОД11

Границы применения ОД11

Признаки делимости на 7 и на 13

Разное

Фокус «1001 как 7, 13 и 11»

Социальные комментарииCackle

Источник: http://archive.li/UZKZJ

Урок 7. Возведение в квадрат в уме

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат.Техника быстрого счета. Быстрый устный счет

Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В данной статье разобраны методики и алгоритмы, позволяющие научиться этому навыку.

Квадрат суммы и квадрат разности

Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:

Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:

  • 372 = (30+7)2 = 302 + 2*30*7 + 72 = 900+420+49 = 1 369
  • 942 = (90+4)2 = 902 + 2*90*4 + 42 = 8100+720+16 = 8 836

Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.

Квадрат близкий к известному квадрату

Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:

На 1 больше:

Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.

  • 312 = 302 + 31 + 30 = 961
  • 162 = 152 + 15 + 16 = 225 + 31 = 256

На 1 меньше:

Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.

  • 192 = 202 – 19 – 20 = 400 – 39 = 361
  • 242 = 252 – 24 – 25 = 625 – 25 – 24 = 576

На 2 больше

Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.

  • 222 = 202 + 2*(20+22) = 400 + 84 = 484
  • 272 = 252 + 2*(25+27) = 625 + 104 = 729

На 2 меньше

Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.

  • 482 = 502 – 2*(50+48) = 2500 – 196 = 2 304
  • 982 = 1002 – 2*(100+98) = 10 000 – 396 = 9 604

Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).

Квадрат чисел, заканчивающихся на 5

Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.

  • 152 = (1*(1+1)) 25 = 225
  • 252 = (2*(2+1)) 25 = 625
  • 852 = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

  • 1552 = (15*(15+1)) 25 = (15*16)25 = 24 025

Квадрат чисел близких к 50

Считать квадрат чисел, которые находятся в диапазоне от 40 до 60, можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:

  • 442 = (25-6)*100 + 62 = 1900 + 36 = 1936
  • 532 = (25+3)*100 + 32 = 2800 + 9 = 2809

Квадрат трехзначных чисел

Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:

Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:

4362 = (400+30+6)2= 4002 + 302 + 62 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.

Игра загружается…

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Евгений Буянов← 6 Умножение до 100 Экзамен по практике →

1PRO

Источник: https://4brain.ru/schitat-v-ume/vozvedenie-v-kvadrat.php

Как быстро извлекать квадратные корни

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат.Техника быстрого счета. Быстрый устный счет

14 декабря 2012

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень. Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней.

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

102 = 100;
202 = 400;
302 = 900;
402 = 1600;…

902 = 8100;

1002 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа.

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

22 = 4;
82 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

522 = (50 +2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;
582 = (60 − 2)2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный 🙂

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
202 < 576 < 302

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

24; 26.

Осталось возвести каждое число в квадрат и сравнить с исходным:

242 = (20 + 4)2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

900 < 1369 < 1600;
302 < 1369 < 402;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

332 = (30 + 3)2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
372 = (40 − 3)2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
502 < 2704 < 602;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

522 = (50 + 2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
602 < 4225 < 702;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

652 = (60 + 5)2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В общем, учитесь считать. И все будет хорошо. Удачи!

Источник: https://www.berdov.com/docs/radikal/bistro-izvlekat-kvadratnie-korni/

10 трюков, упрощающих математические операции — «Хакер»

Извлечение корня квадратного из четырехзначного числа, представляющего полный квадрат.Техника быстрого счета. Быстрый устный счет
Рекомендуем почитать:

  • выпуска
  • Подписка на «Хакер»

В книге «Магия чисел» рассказывается о десятках трюков, которые упрощают привычные математические операции. Оказалось, что умножение и деление в столбик — это прошлый век, а есть гораздо более эффективные способы деления в уме.

Вот 10 самых интересных и полезных трюков.

Умножение «3 на 1» в уме

Умножение трёхзначных чисел на однозначные — это очень простая операция. Всё, что нужно сделать, — это разбить большую задачу на несколько маленьких.

Пример: 320 × 7

  1. Разбиваем число 320 на два более простых числа: 300 и 20.
  2. Умножаем 300 на 7 и 20 на 7 по отдельности (2 100 и 140).
  3. Складываем получившиеся числа (2 240).

Возведение в квадрат двузначных чисел

Возводить в квадрат двузначные числа не намного сложнее. Нужно разбить число на два и получить приближенный ответ.

Пример: 412

  1. Вычтем 1 из 41, чтобы получить 40, и добавим 1 к 41, чтобы получить 42.
  2. Умножаем два получившихся числа, воспользовавшись предыдущим советом (40 × 42 = 1 680).
  3. Прибавляем квадрат числа, на величину которого мы уменьшали и увеличивали 41 (1 680 + 12 = 1 681).

Ключевое правило здесь — превратить искомое число в пару других чисел, которые перемножить гораздо проще. К примеру, для числа 41 это числа 42 и 40, для числа 77 — 84 и 70. То есть мы вычитаем и прибавляем одно и то же число.

Мгновенное возведение в квадрат числа, оканчивающегося на 5

С квадратами чисел, оканчивающихся на 5, вообще не нужно напрягаться. Всё, что нужно сделать, — это умножить первую цифру на число, которое на единицу больше, и добавить в конец числа 25.

Пример: 752

  • Умножаем 7 на 8 и получаем 56.
  • Добавляем к числу 25 и получаем 5 625.
  • Деление на однозначное число

    Деление в уме — это достаточно полезный навык. Задумайтесь о том, как часто мы делим числа каждый день. К примеру, счёт в ресторане.

    Пример: 675 : 8

    1. Найдём приближенные ответы, умножив 8 на удобные числа, которые дают крайние результаты (8 × 80 = 640, 8 × 90 = 720). Наш ответ — 80 с хвостиком.
    2. Вычтем 640 из 675. Получив число 35, нужно разделить его на 8 и получить 4 с остатком 3.
    3. Наш финальный ответ — 84,3.

    Мы получаем не максимально точный ответ (правильный ответ — 84,375), но согласитесь, что даже такого ответа будет более чем достаточно.

    Простое получение 15%

    Чтобы быстро узнать 15% от любого числа, нужно сначала посчитать 10% от него (перенеся запятую на один знак влево), затем поделить получившееся число на 2 и прибавить его к 10%.

    Пример: 15% от 650

    1. Находим 10% — 65.
    2. Находим половину от 65 — это 32,5.
    3. Прибавляем 32,5 к 65 и получаем 97,5.

    Банальный трюк

    Пожалуй, все мы натыкались на такой трюк:

    Задумайте любое число. Умножьте его на 2. Прибавьте 12. Разделите сумму на 2. Вычтите из неё исходное число.

    Вы получили 6, верно? Что бы вы ни загадали, вы всё равно получите 6. И вот почему:

    1. 2x (удвоить число).
    2. 2x + 12 (прибавить 12).
    3. (2x + 12) : 2 = x + 6 (разделить на 2).
    4. x + 6 − x (вычесть исходное число).

    Этот трюк построен на элементарных правилах алгебры. Поэтому, если вы когда-нибудь услышите, что кто-то его загадывает, натяните свою самую надменную усмешку, сделайте презрительный взгляд и расскажите всем разгадку.

    Источник: https://xakep.ru/2014/12/11/math-tricks/

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.