December 03 2016 15:40:46
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Изотермические и адиабатные процессы идеального газа
ОСНОВЫ  ТЕРМОДИНАМИКИ

Работу идеального газа в изотермическом процессе, представленную площадью фигуры (Рис.1), лежащей под изотермой и ограниченной ординатами начала и конца процесса, легко вычислить, учитывая уравнение (3.1) и  взяв интеграл в пределах от V1 до V2

    Изотермическими можно с хорошей степенью приближения считать достаточно медленные термодинамические процессы при отсутствии теплоизоляции, когда температуры всех тел успевают выровняться (время температурной релаксации много меньше времени, характерного для рассматриваемого процесса), и температуру всюду можно считать одинаковой.

Большой интерес для практики представляют также адиабатные  процессы, которые протекают без теплообмена термодинамической системы с окружающей средой. Таковыми можно считать все процессы, протекающие либо в условиях хорошей теплоизоляции, либо настолько быстро, что теплообмен не успевает произойти (время релаксации много больше характерного времени процесса). Такие процессы можно с хорошим приближением считать обратимыми. В этом случае 1-е начало термодинамики (2.7) для газа записывается в виде    

                                  dQ = CvdT + PdV = 0.                         (3.7)

Воспользовавшись уравнением состояния идеального газа (3.1), уравнение (3.7) можно переписать в виде

или

    Воспользовавшись уравнением (2.8),  получаем  

Здесь использовано общепринятое обозначение отношения теплоемкости при постоянном давлении к теплоемкости при постоянном объеме символом  то есть  Cp/ Cv .

Поскольку уравнение состояния (3.1) связывает три термодинамических параметра, оставляя независимыми лишь два из них, то уравнение адиабаты (3.8) можно переписать через другие параметры, например, через давление и объем, то есть в координатах (P,V)

                                                    (3.9)

или в координатах  температура-давление (T,P)

Очевидно, что все три выражения (3.8), (3.9) и (3.10) равносильны.

Отметим, что теоретическое значение отношения теплоемкостей при постоянном давлении и постоянном объеме    может быть вычислено на основе модели структуры молекул идеального газа и гипотезы о равнораспределении кинетической энергии теплового движения по степеням свободы газа (см. ПРИЛОЖЕНИЕ 2). Впрочем, это относится уже к статистической механике, а экспериментальное значение может быть найдено, например, по скорости распространения звука в газе.

Измерить показатель адиабаты по скорости распространения звука в газе можно, воспользовавшись аналогией с распространением звука в твердых телах, где скорость звука, как известно, выражается через модуль Юнга Е и плотность вещества формулой  v2 =  E/  Теперь выражение для скорости звука в газе можно написать в виде

                                                  v2  =  B/

где В - модуль всестороннего сжатия в адиабатном процессе, то есть величина, обратная коэффициенту адиабатной сжимаемости (см. в параграфе 1.2. аналогичную величину для изотермического процесса BT =1/kT).  Следовательно,

Выражение для В в правой части уравнения v2 = B/легко найти,  дифференцируя уравнение адиабаты (3.9), откуда имеем  

dP∙VPVdV = 0.

И, следовательно,

В = P.

Окончательно получаем, что скорость звука в газе (в случае применимости модели идеального газа, когда можно считать, что  P/RT/M) связана с показателем адиабаты формулой  

v2 =RT/M.

По этой формуле из экспериментальных данных о скорости звука можно определить показатель адиабаты.  

    Из этой зависимости следует также, что скорость звука в газах растет с увеличением температуры, что также поддается экспериментальной проверке.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.21 секунд 4,191,166 уникальных посетителей