December 03 2016 02:25:54
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Исследовать зависимость напряженности от расстояния
Методические пособия к решению задач по курсу Электрическтво и магнетизм
  1. Тонкий стержень длиной L =20 см заряжен равномерно зарядом q=10 –9 Кл. Определить напряженность электрического поля в т. А, находящейся на расстоянии r=10 см от центра стержня О (прямая АО перпендикулярна стержню). Исследовать зависимость напряженности от расстояния r для случаев r>>L и r<<L.

Решение.

Пусть X - точка на стержне с координатой х, отсчитываемой от центра вдоль стержня, θ – угол между прямыми АХ и АО. В силу симметрии относительно прямой АО напряженность поля на прямой АО направлена параллельно этой прямой, т.е. E=E//. Т.к. стержень заряжен равномерно, на отрезок длиной dx приходится заряд dq=qdx/L. Этот заряд создает в точке А составляющую поля dE//=(kdq/(r2+x2)cos θ= krdq/(r2+x2)3/2. Тогда

E=E//=(kqr/L) img027=(kqr/L)(L/r2/(r2+L2/4)1/2=(kq/r)/(r2+L2/4)1/2

При L=0.2 м, r=0.1 м и q=10 –9 Кл E=636 В/м.

Если r<<L, то E=2kq/Lr, если r<<L, то E=kq/r2.

  1. Сферический конденсатор образован двумя концентрическими проводящими сферами радиусов R1 и R2 (R1 < R2). Внутренней сфере сообщают заряд q, а внешней –q. Определить напряженность электрического поля в конденсаторе в зависимости от расстояния r от общего центра сфер и построить график этой зависимости.


Решение

Вследствие сферической симметрии у вектора напряженности поля отлична от нуля только проекция на ось, проведенную из центра сфер О. Выбирая в качестве замкнутой поверхности сферу радиуса r с центром в точке О, применим к этой сфере теорему Гаусса. Так как напряженность поля перпендикулярна этой сфере, поток вектора напряженности через эту сферу равен 4πr2E(r). Если r> R2 или r< R1, то полный заряд внутри сферы равен нулю, если R1<r< R2 то полный заряд равен q. Поэтому E(r )=kq/r2, если R1<r< R2 и E(r )=0 при r> R2 или r< R1.

  1. Шар радиуса R равномерно заряжен с объемной плотностью заряда ρ. Определить напряженность электрического поля в зависимости от расстояния r от центра шара и построить график этой зависимости.


Решение

Вследствие сферической симметрии у вектора напряженности поля отлична от нуля только проекция на ось, проведенную из центра шара О. Выбирая в качестве замкнутой поверхности сферу радиуса r с центром в точке О, применим к этой сфере теорему Гаусса. Так как напряженность поля перпендикулярна этой сфере, поток вектора напряженности через эту сферу равен 4πr2E(r). Если r> R, то полный заряд внутри сферы равен q=(4πR3/3)ρ, и E(r )=kq/r2, если r> R . Если r< R, то заряд внутри сферы q=(4πr3/3)ρ, и E(r )=kqr/R3.

  1. Сфера радиуса R равномерно по поверхности заряжена зарядом q. Определить напряженность и потенциал электрического поля в зависимости от расстояния r от центра шара и построить график этих зависимостей. Потенциал бесконечно удаленнойточки принять равным нулю.


Решение

Вследствие сферической симметрии у вектора напряженности поля отлична от нуля только проекция на ось, проведенную из центра шара О. Выбирая в качестве замкнутой поверхности сферу радиуса r с центром в точке О, применим к этой сфере теорему Гаусса. Так как напряженность поля перпендикулярна этой сфере, поток вектора напряженности через эту сферу равен 4πr2E(r). Если r> R, то полный заряд внутри сферы равен q. Тогда E(r)=kq/r2, φ(r)= kq/r, если r> R . Если r< R, то заряд внутри сферы q=0, и E(r )=0, φ(r)= kq/R=const.

  1. Шар радиуса R равномерно заряжен с объемной плотностью заряда ρ. Определить разность потенциалов между точкой О в центре шара и точкой А на расстоянии 2R от центра.


Решение

Вследствие сферической симметрии у вектора напряженности поля отлична от нуля только проекция на ось, проведенную из центра шара О. Выбирая в качестве замкнутой поверхности сферу радиуса r с центром в точке О, применим к этой сфере теорему Гаусса. Так как напряженность поля перпендикулярна этой сфере, поток вектора напряженности через эту сферу равен 4πr2E(r). Если r> R, то полный заряд внутри сферы равен q=(4πR3/3)ρ, и E(r )=kq/r2, φ(r)= kq/r. Если r< R, то заряд внутри сферы q=(4πr3/3)ρ, и E(r )=kqr/R3, φ(r)= kq/R +img028. Потенциал в центре шара φ(0)= 3kq/2R, потенциал в точке А φ(2R)= kq/2R. Разность потенциалов φ(0)- φ(2R)= kq/R.

  1. Три одинаковых точечных заряда (масса каждого m, заряд q) удерживаются в вершинах правильного треугольника со стороной a. Определить скорости этих зарядов после того, как их отпустят, и они разлетятся на большое расстояние друг от друга.


Решение

В силу симметрии заряды приобретут одинаковые скорости v, их полная кинетическая энергия будет 3mv2/2. В начальном состоянии потенциальная энергия взаимодействия каждой пары зарядов составляет q2/a, потенциальная энергия взаимодействия каждого заряда с двумя другими составляет 2q2/a, потенциальная энергия взаимодеиствия всех зарядов друг с другом 3(2q2/a)=6 q2/a. Потенциальная энергия переходит в кинетическую, т.е. 3mv2/2=6 q2/a, откуда

img029

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.04 секунд 4,189,965 уникальных посетителей