December 05 2016 16:35:23
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
функция состояния термодинамической системы
ОСНОВЫ  ТЕРМОДИНАМИКИ

Поскольку в термодинамике, наряду с необратимыми процессами, в принципе возможны также и обратимые процессы, то поиск функции, позволяющей измерить степень хаотичности состояния термодинамической системы, естественно начать с рассмотрения полностью обратимых процессов в изолированных системах. В силу полной обратимости процессов и замкнутости систем степень хаотичности состояния таких систем не должна изменяться, и, следовательно, надо искать функцию, сохраняющуюся в замкнутых системах при всех обратимых тепловых процессах (в том числе при преобразованиях теплоты в работу). Это означает, что изменение этой функции у любого из тел, включенных в замкнутую систему, должно компенсироваться равным по величине, но противоположным по знаку суммарным изменением этой функции у других тел этой изолированной системы.

По своему смыслу искомая функция должна быть функцией состояния системы. В противном случае, проводя циклически (в нужном направлении цикла) термодинамическую систему в начальное состояние с другим, меньшим значением этой функции, можно было бы, многократно повторяя цикл, свести к нулю хаотичность состояния, что противоречит невозможности всю теплоту преобразовать в работу. Следовательно, в циклических процессах, при возвращении термодинамической системы в первоначальное состояние (вне зависимости от пути возвращения и даже без требования замкнутости системы и обратимости процессов) полное изменение этой функции должно быть равно нулю.

 Поиск функции состояния термодинамической системы, сохраняющейся в обратимых процессах в замкнутых (полностью изолированных от любых внешних воздействий) термодинамических системах, привел немецкого физика Рудольфа Клаузиуса к величине, первоначально получившей название «приведенная теплота». Понять, что это такое, можно из рассмотрения рабочего цикла все той же идеальной тепловой машины Карно.

Обратим внимание, что все сохраняющиеся величины носят экстенсивный характер, но сразу отметим, что ранее рассмотренная экстенсивная  величина, характеризующая тепловые процессы, то есть теплота, передаваемая рабочему телу в цикле Карно, явным образом не сохраняется, несмотря на обратимость всех этапов цикла.

У  нас уже есть соотношение (4.4): Q1/Q2 = T1/T2, утверждающее равенство отношения теплоты, полученной от нагревателя, к теплоте, отданной холодильнику, отношению температур нагревателя и холодильника. Уравнение можно переписать в виде отношения

                                    img03

или, учитывая различия знаков для теплоты, получаемой или отдаваемой  рабочим телом,  Q1/T1 = - Q2/T2 , что может быть записано как                         Q1/T1 + Q2/T2  =  0.  

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.06 секунд 4,195,153 уникальных посетителей