December 10 2016 04:59:35
School Nogma
Навигация
 
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
 
Энтропия в замкнутых системах и Неравенство Клаузиуса
ОСНОВЫ  ТЕРМОДИНАМИКИ

5.3.  Энтропия в замкнутых системах. Обратимость процессов как условие сохранения энтропии. Энтропия и необратимость.  Неравенство Клаузиуса

Для пояснения связи энтропии с неполной преобразуемостью теплоты в работу обратимся снова к циклу Карно, используя целесообразную в данном случае дифференциальную форму записи. Поскольку никаких потерь в машине Карно нет, то полученную за цикл от машины работу можно представить как разность теплоты, полученной рабочим телом от нагревателя, и теплоты, отданной рабочим телом холодильнику, то есть   dA = dQн - dQх. Теперь воспользуемся выражением для коэффициента полезного действия машины Карно (4.1)  dAdQн = 1 - dQх/dQн = 1 -  Тхн.  Откуда dQх/dQн = Тхн. При передаче теплоты рабочему телу в изотермическом процессе равны температуры нагревателя и рабочего тела Тн = Трт и, соответственно, равны отданная нагревателем теплота и теплота, полученная рабочим телом,   dQн = dQрт. Теперь, используя выражение (5.1) для изменения энтропии, мы можем представить принципиально не преобразуемую в работу за цикл теплоту выражением                                         

dQх  = Тх (dQн / Тн) =  Тх (dQрт / Трт ) = ТхdS ,

из которого видно, что количество принципиально не преобразуемой в работу за цикл теплоты зависит от температуры холодильника тепловой машины и изменения в рабочем цикле энтропии рабочего тела, а именно равно их произведению. Здесь речь идет о том количестве энтропии, которое забирается рабочим телом у нагревателя и отдается  холодильнику, и при этом понижается степень хаотичности состояния нагревателя, но в равной мере повышается степень хаотичности холодильника, а в целом хаотичность состояния всей системы остается неизменной. Поскольку каждый из сомножителей в правой части равенства в замкнутой системе не может быть равен нулю, то невозможно за цикл не отдавать часть теплоты холодильнику (утрачивая после этого возможность ее дальнейшего преобразования в работу).

Уравнение (5.1) показывает, что в теплоизолированной (δQ = 0) термодинамической системе энтропия может сохраняться, но это условие (отсутствие теплообмена с внешним миром) является лишь необходимым, но не достаточным для сохранения энтропии.

Опыт показывает, что в изолированных системах даже при отсутствии теплообмена энтропия может возрастать, если в них идут релаксационные процессы самопроизвольного выравнивания термодинамических параметров. Для возвращения системы в первоначальное состояние теперь необходимо внешнее воздействие – систему можно квазистатическим образом перевести в начальное состояние, используя отвод теплоты и вычисляя необходимое уменьшение энтропии согласно уравнению (5.1).

Спонтанные (самопроизвольные) изменения в адиабатически замкнутой (теплоизолированной) системе всегда ведут к возрастанию энтропии. В этой асимметрии течения природных процессов заключена причина различимости прошлого и будущего.

С течением релаксационных процессов в системе постепенно утрачивается возможность преобразования теплоты в работу, которая раньше существовала в силу наличия перепадов (неравномерности по объему) интенсивных параметров, например, при выравнивании температур нагревателя и холодильника у тепловой машины. Происходит также так называемая диссипация (рассеяние) энергии за счет работы сил трения, то есть превращение энергии макроскопических движений тел в энергию хаотического движения микрочастиц. Это означает, что самопроизвольно степень хаотичности состояния системы может только увеличиваться, но никогда не убывает, оставаясь неизменной в замкнутых системах лишь в случае протекания в них полностью обратимых процессов.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.06 секунд 4,204,162 уникальных посетителей