Осталось убедиться, что по модулю изменения объемов равны, так как газ должен вернуться в первоначальное состояние. Для этого вспомним полученное при рассмотрении цикла Карно соотношение Vн2/Vн1 = Vх3/Vх4 а также выражение для адиабаты через число степеней свободы молекулы газа VТi/2 = Const. Поскольку 1-я и 4-я точки на диаграмме цикла Карно в координатах давление-объем связаны адиабатой, то Vн1Тнi/2 = Vх4Тхi/2. Если учесть эти уравнения, то очевидно равенство (по модулю) изменений эффективных фазовых объемов в цикле Карно на изотермических участках, dWн = - dWх, что и требовалось показать. Таким образом, рабочее тело (идеальный газ) при завершении цикла Карно возвращается к первоначальному эффективному фазовому объему, характеризующему хаотичность его состояния.
Таким образом, мы убедились, что эффективный объем ведет себя в обратимых процессах аналогично энтропии. Будем для определенности считать его пропорциональным энтропии.
Теперь обратимся к рассмотрению поведения эффективного объема при самопроизвольном выравнивании температур, вследствие теплообмена через теплопроводящую перегородку, двух идентичных количеств газа, отличающихся только температурами, причем Т1 > Т2. Мы знаем из термодинамики, что этот процесс необратим и энтропия должна возрасти. Посмотрим, справедливо ли это для эффективного объема.
Энтропия, как аддитивная величина, для первоначального состояния (с разными температурами, но одинаковыми объемами) находится как сумма энтропий этих газов S(1) = S1(1) + S2(1) , или
S(1) = Const{ΠDqi1Dpi1 + SΠqi2Dpi2} = Const{ΠDqi[ΠDpi1(1)+ ΠDpi2(1)]},
так как объемы газов одинаковы, и, следовательно, одинаков разброс по координатам (множитель перед прямой скобкой пропорционален объему каждого из газов). Значит, энтропия первоначального состояния
S(1) = Const·[ΠDpi1(1)+ ΠDpi2(1)].
После замены теплоизолирующей перегородки на теплопроводящую и выравнивания температур до средней температуры q = (Т1+Т2)/2, новое значение энтропии, вычисленное через эффективные объемы, будет (при сохранении множителя перед прямой скобкой)
S(2) = S1(2) + S2(2) = Const·[Dpi1(2)+ Dpi2(2)]= Const·[2Dpi1(2)],
так как после выравнивания температур усредненный разброс импульсов у молекул в разных отсеках теперь одинаков (а не только разброс по координатам).
По свойству дисперсии гауссова распределения стандарт импульса Dpi ~ √Т и, следовательно, энтропия начального состояния S(1) = Const·(ÖT1+ÖT2), а S(2) = Const·[2Öq] = Const·[ ].
Теперь мы можем найти отношение начального значения энтропии к её конечному значению S(1)/ S(2) = (ÖT1+ÖT2)/ .
Для утверждения, что эффективный объем возрастает после выравнивания температур, осталось показать, что правая часть равенства меньше единицы. Для этого возводим правую часть в квадрат, делим числитель на знаменатель и получаем выражение
½ [1 + (ÖT1ÖT2)/{(T1+T2)/2}],
где в числителе дроби в квадратной скобке оказалось среднее геометрическое, а в знаменателе - среднее арифметическое первоначальных температур, но первое (геометрическое), как известно, всегда меньше второго (арифметического). Следовательно, число в квадратной скобке меньше двух, и значит правая часть уравнения для отношения энтропий меньше единицы, и S(1) < S(2). Тем самым показано, что эффективный объем ведет себя при необратимых процессах выравнивания температур так же, как и энтропия, то есть возрастает, как и должно быть, если этот объём действительно является наглядным отображением энтропии в фазовом пространстве.
Как видно из всех рассмотренных примеров, эффективный объем ведет себя как в обратимых, так и в необратимых процессах так же как энтропия согласно предсказаниям термодинамики.
Согласно квантовой статистике фазовое пространство дискретно и делится на элементарные ячейки размером (hi). Чем больше эффективный объем, тем больше статистический вес термодинамической системы W, который в соответствии с квантовой статистикой будет у нас равен частному от деления эффективного объема на постоянную Планка в степени, равной числу степеней свободы, то есть на (hi), и значит, больше энтропия S = k·lnW.
Таким образом, сообщая термодинамической системе теплоту, мы тем самым увеличиваем степень хаотичности ее состояния, «раздувая» эффективный объем, увеличиваем статистический вес системы и наращиваем энтропию.
Из всего вышеизложенного следует, что энтропии может быть сопоставлен наглядный образ – эффективный объем в фазовом пространстве.
Рекомендуемая литература
1. Леонтович М.А. Введение в термодинамику. - М.: ГИТТЛ, 1952. 200с.
2. Тер Хаар Д., Вергелянд Г. Элементарная термодинамика. - М.: Мир,1968. 220с.
Сивухин Д.В. Общий курс физики. Т.2. Термодинамика и молекулярная физика. - М.: Наука, 1975. 552с.
|