8. Искривленный мир. Общая теория относительности. В мире больших скоростей

Теория относительности Эйнштейна

8. Искривленный мир. Общая  теория  относительности. В мире больших скоростей

В 1905 году Альберт Эйнштейн сделал два заявления: что законы физики одинаковы для всех инерциальных (т.е. двигающихся с постоянной скоростью относительно друг друга) систем, и скорость света в вакууме не зависит от скорости движения наблюдателей.

Эти принципы легли в основу специальной теории относительности (СТО), которая перевернула представления ученых о физике в целом. Эйнштейн потратил целых 10 лет, чтобы включить в данную теорию такой немаловажный компонент, как ускорение.

В 1915 году ему это, наконец, удалось, и он представил миру общую теорию относительности (ОТО), в которой утверждалось, что массивные тела провоцируют искривление пространства-времени, что и является по сути причиной возникновения гравитации.
Исаак Ньютон заявлял, что сила тяготения, возникающая между двумя телами, зависит от их массы и расстояния, на котором они друг от друга находятся.

Центр Земли притягивает человека к себе, а центр массы человека, в свою очередь, притягивает к себе Землю. Однако наша планета, будучи значительно более массивной, чем любой ее житель, едва ли ощущает его тяготение, в то время как человек стоит на Земле именно благодаря ее притяжению. Казалось бы, все логично.

Однако, Ньютон даже не пытался ответить на вопрос, как появляется гравитация, именно поэтому его теория заведомо содержала в себе ошибку. Альберт Эйнштейн пошел дальше. Приняв во внимание озвученные выше принципы СТО и доказав, что скорость света также неизменна и вне вакуума, не зависимо от скорости наблюдателей, он сделал вывод, потрясший абсолютно всех.

Эйнштейн провозгласил, что пространство и время следует объединить в один континуум, который получил название пространство-время. Ученый утверждал, что события, произошедшие в одно и тоже время для одного наблюдателя, могут произойти в разное время для другого наблюдателя.

Работая над ОТО, Эйнштейн осознал, что массивные тела провоцируют искривление пространства-времени. Представить это довольно легко: вообразите резиновую мембрану, в центр которой положили массивное тело.

Мембрана прогнется под весом тела, образуя «яму», верно? А если мы пустим по краю «ямы» маленький шарик, он покатится по спирали вниз, постепенно приближаясь к нашему массивному телу.

Таким же образом работает и гравитация.

Хотя современное оборудование не способно ни увидеть, ни измерить пространство-время, ученые уже обнаружили несколько явлений, которые подтверждают правильность этой теории. Остановимся на них более подробно.

Гравитационное линзирование

Свет вокруг массивных тел, таких как черные дыры, изгибается, подобно тому, как преломляется луч света, проходящий через линзу.

Благодаря этому явлению астрономам удается изучать звезды и галактики, находящиеся за массивными телами.
Крест Эйнштейна — один из ярких примеров гравитационного линзирования. В его центре находится объект-линза — галактика, располагающаяся на расстоянии 400 млн световых лет от Земли.

Другие четыре объекта представляют собой изображения квазара, который на самом деле находится за галактикой и удален от нашей планеты на целых 8 млрд световых лет. Еще один интересный пример: мертвая звезда, которую удалось обнаружить при помощи телескопа «Кеплер».

Этот белый карлик находится в двойной звездной системе вместе с красным карликом, который больше его по размерам, но меньше по массе. Когда белый карлик проходит перед своим соседом, его гравитационное поле искажает свет, исходящий от красного карлика, и делает его ярче.

Изменения в орбите Меркурия

Из-за искривления пространства-времени вокруг нашего массивного Солнца орбита Меркурия постепенно смещается. Через несколько миллиардов лет орбита этого небесного тела может измениться настолько, что в этом далеком будущем возможно его столкновение с Землей.

Искривление пространства-времени Землей

Эйнштейн предсказывал, что любое массивное вращающееся тело, как, например, наша планета, закручивает и искривляет пространство-время вокруг себя. Чтобы проверить это предсказание, в 2004 году НАСА запустила на орбиту Земли зонд «Gravity Probe B» (GP-B).

Ориентация высокоточных гироскопов, расположенных на борту GP-B со временем действительно изменилась, причем именно настолько, насколько следовало, исходя из расчетов Эйнштейна. «Представьте, что Земля погружена в мед, — объясняет происходящее ведущий исследователь миссии «Gravity Probe B» Френсис Эверитт.

– Когда планета вращается, мед закручивается вокруг нее. Тоже самое происходит и с пространством-временем».

Гравитационное красное смещение

Гравитационным красным смещением называют изменение частоты света, испущенного неким источником, по мере его удаления от массивных тел. Представьте машину скорой помощи, которая едет с включенной сиреной.

Когда машина приближается к наблюдателю, длина звуковых волн уменьшается, а когда скорая помощь начинает удаляться, звуковые волны, напротив, удлиняются. Это явление называется эффект Доплера. Тоже самое происходит и с волнами света.

 В 1959 году два физика, Роберт Паунд и Глен Ребка, провели следующий эксперимент: ученые испускали гамма-лучи вертикально в башне Гарвардского университета и обнаружили, что в таких условиях их частота меньше, чем обычно, а причиной тому – искривления, вызванные гравитацией.

Ещё по теме:

by HyperComments

Источник: http://light-science.ru/fizika/teoriya-otnositelnosti.html

Часть II. ДИЛЕММА ПРОСТРАНСТВА, ВРЕМЕНИ И КВАНТОВ

8. Искривленный мир. Общая  теория  относительности. В мире больших скоростей

В специальной теории относительности Эйнштейн разрешил конфликт между накопленными за века интуитивными представлениями о движении и постоянством скорости света.

Вкратце его выводы состояли в том, что наша интуиция имеет изъяны – она срабатывает при скоростях, которые обычно чрезвычайно малы по сравнению со скоростью света и поэтому скрывают истинную суть пространства и времени.

Специальная теория относительности раскрыла их природу и показала, что она радикально отличается от существовавших ранее представлений. Однако переосмысление понятий пространства и времени оказалось нелегким делом.

Эйнштейн вскоре осознал, что одно из многочисленных следствий специальной теории относительности является особенно глубоким: утверждение, что ничто не может превысить скорость света, оказалось несовместимым со всеми уважаемой ньютоновской теорией всемирного тяготения, сформулированной во второй половине XVII в.

Таким образом, разрешив одно противоречие, специальная теория относительности породила другое. После десятилетия интенсивных, иногда мучительных исследований, Эйнштейн разрешил эту дилемму в общей теории относительности. В этой теории он еще раз совершил революцию в понимании свойств пространства и времени, показав, что они искривляются и деформируются, передавая действие силы тяжести.

Ньютоновский взгляд на гравитацию

В 1642 г. в Линкольншире в Англии родился Исаак Ньютон, который изменил лицо науки, поставив всю мощь математики на службу физическим исследованиям. Интеллект Ньютона был столь всеобъемлющ, что, например, когда он однажды обнаружил, что не существует математического аппарата, требуемого для проводимых им исследований, он создал его.

Прошло почти три столетия, прежде чем наш мир снова посетил гений сопоставимого масштаба. Ньютону мы обязаны многими глубокими проникновениями в сущность мироздания. Для нас первостепенное значение будет иметь его теория всемирного тяготения.   Сила тяжести везде вокруг нас в повседневной жизни.

Она удерживает нас и все окружающие тела на поверхности Земли, не позволяет воздуху, которым мы дышим, ускользнуть в космическое пространство, удерживает Луну на орбите вокруг Земли, а Землю – на орбите вокруг Солнца. Сила тяжести диктует ритм космического танца, который неустанно и педантично исполняется миллиардами миллиардов обитателей Вселенной, от астероидов до планет, от звезд до галактик.

Более трех столетий авторитет Ньютона заставлял нас принимать на веру, что одна только сила тяготения отвечает за все разнообразие земных и внеземных событий. Однако до Ньютона не было понимания того, что падение яблока с дерева есть проявление того же закона, который удерживает планеты на орбитах вокруг Солнца.

Сделав отважный шаг в сторону гегемонии науки, Ньютон объединил физические принципы, управляющие Землей и небесами, и объявил силу тяжести невидимой рукой, действующей в обеих сферах.   Ньютоновскую концепцию тяготения можно было бы назвать великим уравнителем. Ньютон объявил, что абсолютно всеоказывает воздействие на абсолютно все во Вселенной.

Это воздействие представляет собой силу тяжести, которая является силой притяжения. Независимо от физической структуры, все оказывает и все испытывает воздействие силы тяжести.

Основываясь на тщательном анализе проведенного Иоганнесом Кеплером изучения движения планет, Ньютон пришел к выводу, что сила гравитационного притяжения между двумя телами зависит только от двух величин: от количества вещества в каждом теле и от расстояния между ними. Вещество означает материю, состоящую из протонов, нейтронов и электронов, которые, в свою очередь, определяют массу объекта.

Ньютоновская теория всемирного тяготения утверждает, что сила притяжения между двумя телами будет больше для тел большей массы и меньше для тел меньшей массы; она также утверждает, что сила притяжения увеличивается при уменьшении расстояния между телами, и уменьшается при увеличении расстояния.

   Ньютон не просто дал это качественное описание, он сделал больше, сформулировав уравнения, количественно описывающие силу тяжести, действующую между двумя телами. Конкретно, эти уравнения утверждают, что сила тяготения между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Этот «закон тяготения» может быть использован для предсказания движения планет и комет вокруг Солнца, Луны вокруг Земли и ракет, отправляющихся для исследования планет, а также для решения более приземленных задач – расчета траектории полета мячика или прыгуна с трамплина, крутящего сальто над бассейном. Согласие между предсказаниями и результатами наблюдений за фактическим движением тел является поразительным. Этот успех обеспечивал теории Ньютона безоговорочную поддержку вплоть до первой половины XX в. Однако открытие Эйнштейном специальной теории относительности выдвинуло проблемы, ставшие непреодолимым препятствием для теории Ньютона.

Несовместимость ньютоновской теории тяготения и специальной теории относительности

Главной особенностью специальной теории относительности является существование абсолютного барьера для скорости, устанавливаемого скоростью света. Важно понимать, что этот предел относится не только к материальным телам, но также к сигналам и воздействиям любого рода.

Не существует способа передать информацию или возмущение из одного места в другое со скоростью, превышающей скорость света. Конечно, в природе есть масса способов распространения возмущений со скоростью, меньшей скорости света.

Например, наша речь и другие звуки передаются с помощью колебаний, распространяющихся в воздухе со скоростью около 330 м/с, что ничтожно мало по сравнению со скоростью света, равной 300 000 км/с. Эта разница скоростей становится очевидной, если наблюдать за бейсбольным матчем с мест, расположенных далеко от поля.

Когда подающий бьет по мячу, звук достигает вас спустя несколько мгновений после того, как вы увидели удар. Похожие вещи происходят во время грозы. Хотя вспышка молнии и удар грома происходят одновременно, мы видим молнию раньше, чем слышим гром. Это снова является отражением значительной разницы в скоростях света и звука.

Успех специальной теории относительности говорит нам, что обратная ситуация, когда какой-нибудь сигнал достигнет нас раньше, чем свет, излученный одновременно с этим сигналом, попросту невозможна. Ничто в мире не может обогнать фотоны.   Здесь и лежит камень преткновения.

В теории тяготения Ньютона одно тело притягивает другое с силой, которая зависит только от масс этих тел и расстояния между ними. Эта сила никак не зависит от того, насколько долго тела находились рядом друг с другом.

Это означает, что если их массы или расстояния между ними изменятся, то тела, согласно Ньютону, немедленно почувствуют изменение взаимного гравитационного притяжения.

Например, ньютоновская теория тяго-тения утверждает, что если Солнце внезапно взорвется, то Земля, расположенная на расстоянии примерно 150 млн км от него, мгновенно сойдет со своей обычной эллиптической орбиты.

Несмотря на то, что вспышка света от взрыва дойдет от Солнца до Земли только через восемь минут, в теории Ньютона сведения о том, что Солнце взорвалось, будут переданы на Землю мгновенно, посредством внезапного изменения силы тяготения, управляющей движением планеты.

   Этот вывод находится в прямом противоречии со специальной теорией относительности, поскольку последняя уверяет, что никакая информация не может быть передана со скоростью, превышающей скорость света. Мгновенное распространение тяготения в максимально возможной степени нарушает это принцип.

   Таким образом, в начале XX в. Эйнштейн осознал, что невероятно успешная теория тяготения Ньютона находится в противоречии со специальной теорией относительности. Уверенный в истинности специальной теории относительности, Эйнштейн, невзирая на огромное количество экспериментальных данных, подтверждающих теорию Ньютона, стал работать над новой теорией гравитации, которая была бы совместима со специальной теорией относительности. Это, в конечном счете, привело его к открытию общей теории относительности, в которой характер пространства и времени вновь претерпел поразительные изменения.

Самая счастливая идея Эйнштейна

Источник: http://alexandr4784.narod.ru/grin_23.htm

Общая теория относительности

8. Искривленный мир. Общая  теория  относительности. В мире больших скоростей

На выступлении 27 апреля 1900 года в королевском институте Великобритании лорд Кельвин сказал: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка – это постоянство скорости света и кривая интенсивности излучения в зависимости от длины волны.

Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать.

» Лорд Кельвин оказался абсолютно прав с указанием ключевых направлений исследований в физике, но не верно оценил их важность: родившиеся из них теория относительности и квантовая теория оказались бескрайними просторами для исследований, занимающих учёные умы вот уже на протяжении более сотни лет.

Формирование теории

3D-модель искривления пространства-времени под действием Солнца и Земли

Так как специальная теория относительности не описывала гравитационное взаимодействие, Эйнштейн вскоре после её завершения приступил к разработке общей версии этой теории, за созданием которой он провёл 1907-1915 годы.

Теория была прекрасной в своей простоте и согласованности с природными явлениями за исключением единственного момента: во времена составления теории Эйнштейном ещё не было известно об расширении Вселенной и даже о существовании других галактик, поэтому учёными того времени считалось что Вселенная существовала бесконечно долго и была стационарна.

При этом из закона всемирного тяготения Ньютона следовало, что неподвижные звёзды должны были в какой-то момент просто быть стянуты в одну точку.

Не найдя для этого явления лучшего объяснения, Эйнштейн ввёл в свои уравнения космологическую постоянную, которая численно компенсировала гравитационное притяжение и позволяла таким образом стационарной Вселенной существовать без нарушения законов физики.

В последствии Эйнштейн стал считать введение космологической постоянной в свои уравнения своей самой большой ошибкой, так как она не была необходима для теории и ничем кроме выглядящей на тот момент стационарной Вселенной не подтверждалось.

А в 1965 году было обнаружено реликтовое излучение, что означало что Вселенная имела начало и постоянная в уравнениях Эйнштейна оказалось и вовсе не нужна.

Тем не менее космологическая постоянная всё-таки была найдена в 1998 году: по полученным телескопом «Хаббл» данным, далёкие галактики не тормозили свой разлёт в следствии притяжения гравитацией, а даже ускоряли свой разлёт.

Основы теории

Процесс движения лучей света по геодезическим линиям под действием массивных тел

«Крест Эйнштейна» (вверху) и «Космическая подкова» (внизу)

Кроме основных постулатов специальной теории относительности, здесь добавилось и новое: механика Ньютона давала численную оценку гравитационного взаимодействия материальных тел, но не объясняла физику этого процесса.

Эйнштейну же удалось описать это посредством искривления массивным телом 4-мерного пространства-времени: тело создаёт вокруг себя возмущение, в результате которого окружающие тела начинают двигаться по геодезическим линиям (примерами таких линий являются линии земной широты и долготы, которые для внутреннего наблюдателя кажутся прямыми линиями, но в реальности немного искривлены). Таким же образом откланяются и лучи света, что искажает видимую картину за массивным объектом. При удачном совпадении положений и масс объектов это приводит к эффекту гравитационного линзирования (когда искривление пространства-времени выступает в роли огромной линзы, делающей источник далёкого света намного ярче). Если же параметры совпадают не идеально – это может приводить к образованию «креста Эйнштейна» или «круга Эйнштейна» на астрономических снимках далёких объектов.

Среди предсказаний теории также было гравитационное замедление времени, (которое при приближении к массивному объекту действовало на тело точно также, как и замедление времени в следствии ускорения), гравитационное красное смещение (когда луч света, испущенный массивным телом, уходит в красную часть спектра в следствии потери им энергии на работу выхода из «гравитационного колодца»), а также гравитационные волны (возмущение пространства-времени, которое производит любое тело имеющее массу в процессе своего движения).

Статус теории

Первое подтверждение общей теории относительности было получено самим Эйнштейном в том же 1915 году, когда она и была опубликована: теория с абсолютной точностью описывала смещение перигелия Меркурия, которое до этого никак не могли объяснить при помощи ньютоновской механики. С того момента было открыто множество других явлений, которые предсказывались теорией, но на момент её публикации были слишком слабы чтобы их можно было засечь. Последним таким открытием на данный момент стало открытие гравитационных волн 14 сентября 2015 года.

Теория относительности и квантовая теория

Не смотря на то, что теория относительности замечательно описывает процессы в макромире, но миром микромира всё же правит квантовая теория. Сам Эйнштейн в последние годы жизни пытался объединить две эти теории в одну объединённую теорию, которая уже получила название «теории всего».

Однако в этот раз он потерпел неудачу также, как и множество учёных пытавшихся это сделать после него.

Примерно до начала 2000-х годов казалось, что с появлением теории струн решение уже почти найдено, однако примирить в ней все виды взаимодействий и элементарных частиц так до сих пор и не удалось: если при одном числе измерений в этой теории хорошо описываются одни частицы, то другие из них никак не вписываются, при другом же их числе теорией замечательно описываются противоположные частицы, но уже не вписываются первые. Таким образом поиски объединённой теории всё ещё продолжаются.

by HyperComments

Источник: http://SpaceGid.com/korotko-ob-obshhey-teorii-otnositelnosti.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.