5. Существует ли вообще движение?. Новое в повседневном. В мире больших скоростей

Содержание

Самые быстрые объекты, сделанные человеком. ТОП-10

5. Существует ли вообще движение?. Новое   в  повседневном. В мире больших скоростей

Человечество научилось строить очень мощные и высокоскоростные объекты, которые собираются десятилетиями, чтобы потом достигнуть самых отдаленных целей. «Шаттл» на орбите движется со скоростью более 27 тысяч км в час. Ряд космических зондов НАСА, такие как «Гелиос 1», «Гелиос 2» или «Воджер 1» достаточно мощны, чтобы достичь Луны за несколько часов.

☛ Эта статья была переведена с англоязычного ресурса themysteriousworld.com и, конечно же, не совсем соответствует действительности.

Многие российские и советские ракетоносители и космические аппараты преодолевали барьер в 11000 км/ч, но на западе, видимо, привыкли этого не замечать.

Да и информации о наших космических объектах в свободном доступе довольно немного, во всяком случае о скорости многих российских аппаратов мы так и не смогли узнать.

Вот список из десяти самых быстрых объектов, произведенных человечеством:

10

Ракетная тележка

Скорость: 10 385 км/ч

Ракетные тележки фактически используются для тестирования платформ, используемых для ускорения экспериментальных объектов. Во время испытаний тележка имеет рекордную скорость 10385 км/час. На этих устройствах вместо колес используются раздвижные колодки, чтобы можно было развить такую молниеносную скорость. Ракетные тележки приводятся в движение с помощью ракет.

Эта внешняя сила придает начальное ускорение экспериментальным объектам. У тележек также есть длинные, более 3 км, прямые участки пути.

Танки ракетных тележек заполнены смазочными материалами, такими как газообразный гелий, так что это помогает экспериментальному объекту развить необходимую скорость.

Эти устройства обычно используются для ускорения ракет, авиационных деталей и аварийно-спасательных секций воздушных судов.

9

NASA X-43 A

Скорость: 11 200 км/ч

ASA X-43 А представляет собой беспилотный сверхзвуковой летательный аппарат, который запускается с большего самолета. В 2005 году, книга рекордов Гиннеса признала NASA X-43 А самым быстрым самолетом из когда-либо сделанных. Он развивает максимальную скорость 11 265 км/ч, это примерно в 8,4 раза быстрее, чем скорость звука.

NASA X-13 А использует технологию запуска при падении. Сначала этот сверхзвуковой самолет попадает на большую высоту на более крупном самолете, а затем падает. Необходимая скорость достигается с помощью ракеты-носителя. На заключительном этапе, после достижения заданной скорости NASA X-13 работает на своем собственном двигателе.

8

Шаттл «Колумбия»

Скорость: 27 350 км/ч

Шаттл «Колумбия» был первым успешным многоразовым космическим кораблем за всю историю освоения космоса. С 1981 года он успешно выполнил 37 миссий. Рекордная скорость шаттла «Колумбия» — 27 350 км/ч. Корабль превысил свою нормальную скорость, когда упал 1 февраля 2003 года.

Обычно шаттл движется со скоростью 27 350 км/ч, чтобы оставаться на нижней орбите Земли. При такой скорости, экипаж космического корабля может увидеть восход и заход солнца несколько раз в течение одного дня.

7

Шаттл «Дискавери»

Скорость: 28 000 км/ч

Шаттл «Дискавери» имеет рекордное число успешных миссий, больше, чем любой другой космический корабль. С 1984 года «Дискавери» осуществил 30 успешных рейсов, и его рекорд скорости — 28 000 км/ч. Это в пять раз быстрее, чем скорость пули. Иногда космические аппараты должны двигаться быстрее, чем их обычная скорость 27 350 км/ч. Все зависит от выбранной орбиты и высоты космического аппарата.

6

Спускаемый аппарат «Аполлон 10»

Скорость: 39 897 км/ч

Запуск «Аполлон 10» был репетицией миссии НАСА перед прилунением. Во время обратного пути, 26 мая 1969 года аппарат «Аполлон 10» приобрел молниеносную скорость 39 897 км/ч. Книга рекордов Гиннеса зафиксировала рекорд скорости спускаемого аппарата «Аполлон 10» как максимальный рекорд скорости пилотируемого транспортного средства.

На самом деле, модулю «Аполлон 10» была нужна такая скорость, чтобы с лунной орбиты достигнуть атмосферы Земли. Свою миссию «Аполлон 10» также завершил миссию за 56 часов.

Продолжение статьи читайте на следующей странице

5

Скорость: 46 439 км/ч

«Стардаст» — это специальный космический зонд, который НАСА запустило в 1999 году, чтобы собрать образцы из кометы Wild 2 для лабораторного анализа. 300-килограммовый роботизированный зонд за время миссии развил максимальную скорость 46 439 км/ч. То есть в 6 раз больше, чем скорость пули. Он успешно завершил основную миссию в 2006 году.

Во время миссии «Стардаст» пролетел 3,2 миллиарда км, чтобы встретиться с кометой Wild 2.

4

Автоматическая межпланетная станция «Новые горизонты»

Скорость: 58 536 км/ч

«Новые горизонты» — это космический зонд запущен НАСА в 2006 году для изучения планеты Плутон и его спутников. Зонд достиг орбиты Плутона в 2015 году, а запущен был 19 января 2006 года.

За это время он развил рекордную скорость 58 536 км/ч, и имел самую высокую скорость запуска.

Однокомпонентное топливо и гравитационные маневры – это основные факторы, которые помогли космической станции развить максимальную скорость при запуске.

3

«Вояджер 1»

Скорость: 62 136 км/ч

«Вояджер 1» — самый отдаленный на сегодняшний день объект, который сделан человеком. Космический зонд был запущен еще в 1977 году с миссией исследования внешней части Солнечной системы.

25 августа 2013 года, «Вояджер 1» вошел в межзвездное пространство. Во время полета, космический аппарат развивает максимальную скорость 62 136 км/ч. Он покрывает расстояние в 520 миллионов километров ежегодно.

Свою миссию «Вояджер 1» будет продолжать до 2025 года.

2

«Гелиос 1»

Скорость: 228 526 км/ч

«Гелиос 1» — космический зонд, который НАСА запустило совместно с Немецким космическим агентством 10 декабря 1974 года для изучения солнечных процессов.

Этому космическому аппарату удалось достичь эллиптической орбиты Солнца. Во время полета «Гелиос 1» достиг скорости 228 526 км/ч.

Находясь на солнечной орбите на расстоянии 149 597 871 км от поверхности Земли, аппарат продолжал отправку данных до 1982 года.

1

«Гелиос 2»

Скорость: 252 792 км/ч

«Гелиос 2» — космический зонд НАСА, который на сегодня является самым быстрым рукотворным объектом. Его рекорд скорости — 252 792 км/ч. Также он подошел ближе к Солнцу, чем его предшественник. «Гелиос 2» оборачивается вокруг Солнца на рекордном расстоянии 0,29 астрономических единиц от поверхности.

Аппарат запущен 15 января 1976 г. Он достиг орбиты Солнца 17 апреля 1976 г. Космический зонд отправлял на Землю данные о солнечной плазме, солнечной пыли, космических лучах и электрическом поле на Землю до 23 декабря 1979 г. Оба аппарата «Гелиос 1» и «Гелиос 2» по-прежнему остаются на орбите Солнца.

Заключение

Теперь, когда Вас или Ваших близких остановят за превышение скорости, можете смело сказать инспектору, что Ваша скорость не такая высокая, как скорость некоторых других вещей. Это были самые быстрые объекты, сделанные человеком. Спасибо за внимание!

Источник: http://TopSweet.ru/top-10-samyh-bystryh-obektov-sdelannyh-chelovekom/

В нашей вселенной медленно исчезает время

5. Существует ли вообще движение?. Новое   в  повседневном. В мире больших скоростей

Что, если временную часть в уравнении пространственно-временного континуума буквально исключить? Одно из последних исследований, возможно, свидетельствует о том, что время медленно и постепенно исчезает из нашей Вселенной и в один прекрасный день испарится совсем. Новая радикальная теория может объяснить космологическую загадку, которая морочила голову ученым в течение многих лет.

Ранее ученые измеряли свет далеких взрывающихся звезд, чтобы показать, что Вселенная расширяется, и темп этого расширения постоянно растет. Ученые предположили, что эти сверхновые разлетаются на части быстрее, чем стареет Вселенная. Физики также сделали вывод, что некая антигравитационная сила должна разводить галактики в стороны, и стали называть эту неизвестную силу «темной энергией».

Идея того, что само время может исчезнуть через миллиарды лет — и все остановится — была предложена еще в 2009 году профессорами Хосе Сеньовилла, Марком Марсом и Раулем Вера из Университета Баска Кантри в Бильбао и Университета Саламанки в Испании. Следствием этого кардинального движения самого времени к концу является альтернативное объяснение «темной энергии» — таинственной антигравитационной силы, которая была предложена для объяснения некоторых космических явлений.

Однако по сей день никто не знает, чем является темная энергия на самом деле и откуда берется. Профессор Сеньовилла и его коллеги предложили невероятную альтернативу. Ученые предложили исключить такое понятие, как темная энергия, вообще и еще раз пересмотреть наши взгляды.

По мнению Сеньовиллы, мы обманываем сами себя, думая, что Вселенная расширяется, когда на самом деле это время замедляется. На бытовом повседневном уровне это замедление будет незаметно. Но если отслеживать ход Вселенной в течение миллиардов лет, то на космических масштабах все станет очевидно.

Это изменение будет бесконечно медленным с человеческой точки зрения, но с точки зрения космологии, в силах которой изучать свет древних солнц, светивших миллиарды лет назад, его можно с легкостью измерить.

Предложение группы ученых, опубликованное в журнале Physical Review D, исключает темную энергию как вымысел. Вместо этого Сеньовилла объясняет появление ускорения постепенным замедлением самого времени.

«Мы не говорим, что расширение Вселенной само по себе является иллюзией, — объясняет физик. — Мы считаем, что иллюзией может быть ускорение этого расширения — это, в свою очередь, не отменяет наличие расширения, которое [для нас] наращивает свой темп».

Если время постепенно замедляется, «а мы наивно продолжаем использовать свои уравнения для определения изменений скорости расширения относительно обычного течения времени, то простая модель, продемонстрированная в нашей работе, показывает эффективное ускорение этого расширения».

В настоящее время астрономы могут определить скорость расширения Вселенной, используя так называемый метод «красного смещения». В основе этой техники лежит понимание того, что звезды, которые движутся от нас, краснее тех, что движутся в нашем направлении. Ученые ищут сверхновые определенного рода, которые стали эталоном в этом плане.

Тем не менее точность этих измерений предполагает инвариантность времени по всей Вселенной. Если время замедляется, согласно новой теории, наше одинокое временное измерение медленно превращается в новое пространственное измерение.

  Таким образом, далекие древние звезды, за которыми наблюдают космологи из нашей перспективы, кажутся ускоряющимися.

«Наши расчеты показывают, что мы можем подумать, будто расширение вселенной ускоряется», — говорит Сеньовилла. В основе теории лежит один из вариантов теории суперструн, согласно которому наша Вселенная ограничена поверхностью мембраны, или браны, плавающей в многомерном пространстве. Спустя миллиарды лет время вообще перестанет быть временем.

«Тогда все замерзнет, словно снимок одного момента, навсегда. Нашей планеты к тому времени уже не будет».

Несмотря на всю свою радикальность и беспрецедентность, эти идеи не остаются без поддержки. Гэри Гиббонс, космолог Кембриджского университета, говорит, что у такой концепции есть свои плюсы. «Мы считаем, что время появилось в процессе Большого Взрыва, и если время может появляться, значит оно может и исчезать — это всего лишь обратный эффект».

Существует ли время?

В 2011 году ученые из Научно-исследовательского центра Биста в Птуй, Словения, предположили, что ньютоновская идея времени как абсолютной величины, текущего само по себе, равно как и предположение, что время — это четвертое измерение пространства-времени — неверны. Они предложили заменить эти понятия времени более соответствующим нашему физическому миру: время как количественный порядок изменений.

В двух статьях, опубликованных в Physics Essays, Амрит Сорли, Дэвид Фискалетти и Дюшан Клинар предприняли попытку объяснить, что то, что мы имеем в виду под временем, на самом деле является абсолютной физической величиной, играющей роль независимой переменной (время, t, часто является осью X в системе координат, демонстрирующей эволюцию физической системы). Но, как отмечают ученые, мы никогда не измеряем t. Мы измеряем частоту и скорость объекта. Само по себе время является сугубо математической величиной и не существует физически.

Эта точка зрения означает не то, что время не существует, а то, что время имеет больше общего с пространством, нежели с идеей абсолютного времени.

Таким образом, хотя четырехмерное пространство-время, как зачастую предполагают, состоит из трех измерений пространства и одного измерения времени, взгляд ученых предполагает, что было бы более корректно представлять пространство-время в виде четырех измерений пространства. Другими словами, Вселенная «безвременна».

«Пространство Минковского — не три измерения плюс время, а четыре измерения, — писали ученые.

Точка зрения, согласно которой время представлено физической сущностью, в которой происходят материальные изменения, заменяется более удобной точкой зрения, в которой время будет просто числовым порядком материального изменения.

Этот взгляд лучше отвечает физическому миру и лучше объясняет мгновенные физические явления: гравитацию, электростатическое взаимодействие, передачу информации в ходе эксперимента ЭПР и другие».

«Идея того, что время представляет собой четвертое измерение пространства, не принесла особого прогресса физике и находится в противоречии с формализмом специальной теории относительности.

Сейчас мы разрабатываем формализм трехмерного квантового пространства на основе работ Планка. Похоже на то, что вселенная трехмерна на макро- и микроуровнях в планковских объемах. В таком трехмерном пространстве нет «сокращения длины», нет «замедления времени».

А что есть, так это скорость материальных изменений, которая «относительна» в эйнштейновском смысле».

Ученые приводят пример этой концепции времени, изображая фотон, который перемещается между двумя точками в пространстве. Пространство между ними полностью состоит из планковских длин, то есть из мельчайших дистанций, которые может преодолеть фотон в момент времени.

Когда фотон перемещается на планковскую длину, он описывается как передвигающийся исключительно в пространстве и не в абсолютном времени. Фотон можно рассматривать как движущийся из точки 1 в точку 2, и его позиция в точке 1 — это «перед» позицией в точке 2, в буквальном смысле, поскольку цифра 1 идет перед цифрой 2 в числовом ряде.

Числовой порядок не эквивалентен временному порядку, то есть цифра 1 во времени не существует перед цифрой 2, только численно.

Без использования времени как четвертого измерения пространства-времени, физический мир можно было бы описать более точно. Как отмечал физик Энрико Прати в недавнем исследовании, гамильтонова динамика (уравнения в классической механике) крайне четко определяется без понятия абсолютного времени.

Другие ученые отмечали, что математическая модель пространства-времени не соответствует физической реальности, и предложили использовать вневременное «состояние пространства», которое обеспечило бы более точные рамки.

Также ученые отмечали фальсифицируемость двух понятий времени.

К примеру, понятие времени как четвертого измерения пространства — как фундаментальной физической емкости, в которой происходит эксперимент — может быть сфальсифицировано экспериментом, в котором время не существует.

«Теория абсолютного времени Ньютона не фальсифицируема; вы не можете доказать ее или опровергнуть — вы должны поверить ей, — говорит Сорли.

— Теория времени как четвертого измерения пространства фальсифицируема, и своей последней работой мы показали, что вероятность такой фальсификации весьма высока. Экспериментальные данные показывают, что время — это то, что мы измеряем часами.

А часами мы измеряем численный порядок материальных изменений, то есть движение в пространстве».

Ахиллес и черепаха

В дополнение к обеспечению более точного описания природы физической реальности, понятие времени как количественного порядка изменений может разрешить парадокс Зенона «Ахиллес и черепаха». В этом парадоксе Ахиллес пытается догнать черепаху в беге наперегонки.

Но хотя Ахиллес может бежать в 10 раз быстрее черепахи, он никогда не обгонит черепаху, потому что всякий раз, когда Ахиллес пробегает определенное расстояние, черепаха проходит одну десятую этого расстояния. Таким образом, когда бы Ахиллес не достигал пункта, в котором была черепаха, она все равно будет немного впереди.

Хотя вывод, что Ахиллес никогда не сможет обогнать черепаху, очевидно ложный, есть много других объяснений этого парадокса.

Парадокс можно разрешить, если переопределить скорость, так что скорость обоих бегунов будет определяться численным порядком их движений, а не перемещением и направлением во времени. С этой точки зрения Ахиллес и черепаха будут двигаться только через пространство, и Ахиллес точно обгонит соперника в пространстве, хотя и не в абсолютном времени.

Некоторые из последних исследований поставили под вопрос теорию, что мозг представляет время как внутренние «часы», испускающие нейронные тики, и предположили, что мозг представляет время в виде пространственного распределения, регистрируя активацию разных нейронных узлов. Хотя мы воспринимаем события как случающиеся в прошлом, настоящем или в будущем, эти понятия могут быть просто частью психологических рамок, в которых мы испытываем материальные изменения в пространстве.

В любом случае, если эту теорию и можно рассмотреть математически (в виде решения проблемы стрелы времени), остается еще один вопрос без ответа: что такое время?

Источник: https://Hi-News.ru/research-development/v-nashej-vselennoj-medlenno-ischezaet-vremya.html

Возможны ли путешествия во времени? (7 фото)

5. Существует ли вообще движение?. Новое   в  повседневном. В мире больших скоростей

30 августа 2014 nlo-mir Путешествие во времени

Со времен эпохи королевы Виктории и до сегодняшнего дня понятие путешествий во времени будоражило умы любителей фантастики. Каково это — путешествовать сквозь четвертое измерение? Самое интересное, что для путешествий во времени не нужна машина времени или нечто вроде «кротовой норы».

Вы наверняка заметили, что мы постоянно перемещаемся во времени. Движемся сквозь него. На базовом уровне понятия время ­— это скорость изменения Вселенной, и вне зависимости от того, нравится нам это или нет, мы подвержены постоянным изменениям. Стареем, планеты движутся вокруг Солнца, вещи разрушаются.

Мы измеряем ход времени секундами, минутами, часами и годами, но это совсем не означает, что время течет с постоянной скоростью. Как вода в реке, время идет по-разному в разных местах. Короче говоря, время относительно.

Но что вызывает временные флуктуации на пути от колыбели до могилы? Все сводится к отношению между временем и пространством. Человек способен воспринимать в трех измерениях — длина, ширина и глубина.

Время же дополняет эту партию как самое важное четвертое измерения. Время не существует без пространства, пространство не существует вне времени. И эта парочка соединяется в пространственно-временной континуум.

Любое событие, происходящее во Вселенной, должно вовлекать пространство и время.

В этой статье мы рассмотрим наиболее реальные и повседневные возможности путешествия сквозь время в нашей вселенной, а также менее доступные, но от этого не менее возможные пути сквозь четвертое измерение.

Временные путешествия в будущее

Поезд — реальная машина времени.

Если вы хотите прожить пару лет немного быстрее, чем кто-то другой, вам нужно управляться с пространством-временем.

Спутники глобального позиционирования совершают это каждый день, обгоняя естественный ход времени на три миллиардных доли секунды. На орбите время течет быстрее, поскольку спутники находятся далеко от массы Земли.

А на поверхности масса планеты увлекает за собой время и замедляет его в относительно небольших масштабах.

Этот эффект называется гравитационным замедлением времени. Согласно общей теории относительности Эйнштейна, гравитация искривляет пространство-время, и астрономы используют это следствие, когда изучают свет, проходящий вблизи массивных объектов (о гравитационном линзировании мы писали здесь и здесь).

Но какое отношение это имеет ко времени? Помните — любое событие, происходящее во вселенной, вовлекает как пространство, так и время. Гравитация не только стягивает пространство, но и время.

Будучи в потоке времени, вы едва ли заметите изменение его хода.

Но достаточно массивные объекты — вроде сверхмассивной черной дыры альфы Стрельца, расположенной в центре нашей галактики — будут серьезно искривлять ткань времени.

Масса ее точки сингулярности — 4 миллиона солнц. Такая масса замедляет время в два раза. Пять лет на орбите черной дыры (без падения в нее) — это десять лет на Земле.

Скорость движения тоже играет важную роль в скорости течения нашего времени. Чем ближе вы подходите к максимальной скорости движения — скорости света — тем медленнее течет время.

Часы в быстро идущем поезде к концу путешествия начнут «опаздывать» на одну миллиардную секунды.

Если поезд достигнет скорости в 99,999% световой, за один год в вагоне поезда можно перенестись на двести двадцать три года в будущее.

По сути, на этой идее строятся гипотетические путешествия в будущее в будущем, простите за тавтологию. Но как насчет прошлого? Можно ли повернуть время вспять?

Временные путешествия в прошлое

Звезды — пережитки прошлого.

Мы выяснили, что путешествие в будущее происходит все время. Ученые доказали это экспериментально, и эта идея лежит в основе теории относительности Эйнштейна. В будущее вполне можно переместиться, вопросом остается только «насколько быстро»? Что касается путешествий в прошлое, то для ответа на этот вопрос нужно взглянуть в ночное небо.

Галактика Млечный Путь шириной примерно в 100 000 лет, а значит, свету от далеких звезд нужно преодолеть тысячи и тысячи лет, прежде чем он достигнет Земли. Уловите этот свет, и по сути, вы просто заглянете прошлое. Когда астрономы измеряют космическое микроволновое излучение, они заглядывают в тот космос, каким он был 10 миллиардов лет назад. Но все ли это?

В теории относительности Эйнштейна нет ничего, что исключало бы возможность путешествие в прошлое, но само возможное существование кнопки, которая могла бы вернуть вас во вчерашний день, нарушает закон причинности или причины и следствия.

Когда во вселенной что-то происходит, событие порождает новую бесконечную цепочку событий. Причина всегда рождается раньше следствия. Просто представьте себе мир, где жертва бы умирала до того, как пуля попадет ей в голову.

Это нарушение действительности, но несмотря на это, многие ученые не исключают возможности путешествий в прошлое.

Например, полагают, что движение быстрее скорости света может отправить назад в прошлое.

Если время замедляется по мере того, как объект приближается к скорости света, то может преодоление этого барьера повернет время вспять? Конечно, при приближении к скорости света растет и релятивистская масса объекта, то есть приближается к бесконечности.

Ускорить бесконечную массу представляется невозможным. Теоретически, варп-скорость, то есть деформация скорости как таковой, может обмануть универсальный закон, но даже это потребует колоссальных затрат энергии.

А что, если путешествия во времени в будущее и прошлое зависят не столько на наших базовых знаниях космоса, а больше от существующих космических феноменов? Давайте взглянем на черную дыру.

Черные дыры и кольца Керра

Что находится по ту сторону черной дыры?

Покружитесь около черной дыры достаточно долго и гравитационное замедление времени забросит вас в будущее. Но что, если вы угодите прямо в пасть этого космического монстра? О том, что будет при погружении в черную дыру, мы уже писали, но не упоминали такую экзотическую разновидность черных дыр, как кольцо Керра. Или черная дыра Керра.

В 1963 году новозеландский математик Рой Керр предложил первую реалистическую теорию вращающейся черной дыры. Концепция включает нейтронные звезды ­— массивные коллапсирующие звезды размером с Санкт-Петербург, например, но с массой земного Солнца.

Нейтронные дыры мы включили в список самых загадочных объектов во Вселенной, обозвав их магнетарами. Керр предположил, что если умирающая звезда сколлапсирует во вращающееся кольцо нейтронных звезд, их центробежная сила не даст им превратиться в сингулярность.

И поскольку у черной дыры не будет точки сингулярности, Керр посчитал, что вполне можно будет попасть внутрь, без страха быть разорванным гравитацией в центре.

Если черные дыры Керра существуют, мы могли бы пройти сквозь них и выйти в белую дыру. Это как выхлопная труба черной дыры. Вместо того, чтобы засасывать все, что только можно, белая дыра будет, напротив, выбрасывать все, что можно. Возможно, даже в другом времени или другой Вселенной.

Черные дыры Керра остаются теорией, но если они действительно существуют, они являются своего рода порталами, предлагающими одностороннее путешествие в будущее или прошлое. И хотя чрезвычайно развитая цивилизация могла бы развиваться таким образом и перемещаться во времени, никто не знает, когда «дикая» черная дыра Керра исчезнет.

Кротовые норы (червоточины)

Искривление пространства-времени.

Теоретические кольца Керра являются не единственным способом возможных «сокращенных» путей в прошлое или будущее. В научно-фантастических фильмах — от «Звездного пути» до «Донни Дарко» — часто рассматривается теоретический мост Эйнштейна-Розена. Вам эти мосты более известны под названием червоточин.

Общая теория относительности Эйнштейна допускает существование червоточин, поскольку в основе теории великого физика лежит искривление пространства-времени под воздействием массы.

Чтобы понять эту кривизну, представьте себе ткань пространства-времени в виде белого листа и согните его пополам.

Площадь листа останется прежней, сам он не деформируется, но вот расстояние между двумя точками соприкосновение явно будет меньшим, чем когда лист лежал на плоской поверхности.

В этом упрощенном примере пространство изображается в виде двухмерной плоскости, а не четырехмерной, каким на самом деле и является (вспомним четвертое измерение — время). Аналогично работают и гипотетические кротовые норы.

Перенесемся в космос. Концентрация массы в двух разных частях Вселенной могла бы создать своеобразный туннель в пространстве-времени.

В теории этот туннель соединил бы два разных отрезка пространственно-временного континуума между собой.

Разумеется, вполне возможно, что какие-нибудь физические или квантовые свойства не дают таким червоточинам зарождаться самостоятельно. Ну или они рождаются и тут же гибнут, будучи нестабильными.

По словам Стивена Хокинга, десять самых интересных фактов из жизни которого мы вам недавно представляли, червоточины могут существовать в квантовой пене — самой мелкой среде во Вселенной. Крошечные туннели постоянно рождаются и разрываются, связывая отдельные места и время на короткие мгновения.

Кротовые норы могут оказаться слишком малы и кратковременными для перемещения человека, но вдруг однажды мы сможем их найти, удержать, стабилизировать и увеличить? При условии, как отмечает Хокинг, что вы будете готовы к обратной связи. Если мы захотим искусственным образом стабилизировать туннель пространства-времени, радиация от наших действий может его уничтожить, как обратный ход звука может повредить динамик.

Космические струны

Мы пытаемся протиснуться сквозь черные дыры и червоточины, но, может, есть другой способ путешествий во времени с использованием теоретического космического феномена? С этими мыслями мы обращаемся к физику Дж. Ричарду Готту, который изложил идею космической струны в 1991 году. Как следует из названия, это гипотетические объекты, которые могли сформироваться на ранних этапах развития вселенной.

Эти струны пронизывают всю Вселенную, будучи тоньше атома и находясь под сильным давлением.

Естественно, из этого следует, что они дают гравитационную тягу всему, что проходит рядом с ними, а значит объекты, прикрепленные к космической струне, могут путешествовать во времени с невероятной скоростью.

Если подтянуть две космические струны поближе друг к другу или расположить одну из них рядом с черной дырой, можно создать то, что называется замкнутой времениподобной кривой.

Используя гравитацию, производимую двумя космическими струнами (или струной и черной дырой), космический корабль теоретически мог бы отправить себя в прошлое. Для этого нужно было бы сделать петлю вокруг космических струн.

Между прочим, квантовые струны сейчас очень горячо обсуждаемые. Готт заявил, что для путешествия назад во времени, нужно сделать петлю вокруг струны, содержащей половину массы-энергии целой галактики.

Другими словами, половину атомов в галактике пришлось бы задействовать как топливо для вашей машины времени. Ну и как всем хорошо известно, нельзя вернуться во времени раньше, чем была создана сама машина.

Кроме того, существуют и временные парадоксы.

Парадоксы путешествий во времени

Убил деда — убил себя.

Как мы уже сказали, идея путешествия в прошлое слегка омрачается второй частью закона причинности. Причина следует перед следствием, как минимум в нашей вселенной, а значит может испортить даже самые продуманные планы путешествий во времени.

Для начала представьте: если вы отправитесь в прошлое на 200 лет, вы появитесь задолго до своего рождения. Подумайте об этом секунду. В течение какого-то времени следствие (вы) будет существовать прежде причины (ваше рождение).

Чтобы лучше понять, с чем мы имеем дело, рассмотрим известный парадокс деда. Вы — убийца, который путешествует во времени, вшаа цель — ваш собственный дедушка. Вы проникаете сквозь ближайшую кротовую нору и подходите к живой 18-летней версии отца вашего отца. Вы поднимаете пистолет, но что происходит, когда вы нажимаете на спусковой крючок?

Подумайте. Вы еще не родились. Даже ваш отец еще не родился. Если вы убьете деда, у него не будет сына. Этот сын никогда не родит вас, и вы не сможете отправиться в прошлое, выполняя кровавую задачу. И ваше отсутствие никак не нажмет на курок, тем самым отрицая всю цепочку событий. Мы называем это петлей несовместимых причин.

С другой стороны, можно рассмотреть идею последовательной причинной петли. Она, хоть и заставляет задуматься, теоретически избавляет от временных парадоксов.

По мнению физика Пола Дэвиса, подобная петля выглядит следующим образом: профессор математики отправляется в будущее и похищает сложнейшую математическую теорему. После этого выдает ее самому блестящему студенту.

После этого перспективный студент растет и учится с тем, чтобы однажды стать человеком, у которого профессор однажды спер теорему.

Кроме того, есть еще одна модель путешествий во времени, которая включает в себя искажение вероятности при приближении к возможности парадоксального события. Что это означает? Давайте вернемся в шкуру убийцы вашего деушки.

Эта модель путешествия во времени может убить вашего дедушку виртуально. Вы можете нажать на курок, но пистолет не сработает.

Птичка чирикнет в нужный момент или произойдет еще что-нибудь: квантовая флуктуация не даст парадоксальной ситуации состояться.

И наконец, самое интересное. Будущее или прошлое, в которое вы отправитесь, попросту может существовать в параллельной Вселенной. Представим это как парадокс разделения. Вы можете уничтожить все, что угодно, но на ваш домашний мирок это никак не повлияет.

Вы убьете деда, но не исчезнете ­— исчезнет, возможно, другой «вы» в параллельном мире, ну или сценарий пойдет по уже рассмотренным нами схемам парадокса.

Однако, вполне возможно, что такое путешествие во времени будет одноразовым и вы никогда не сможете вернуться домой.

Совсем запутались? Добро пожаловать в мир путешествий во времени.

Другие статьи:

Источник: https://nlo-mir.ru/mashinavremeni/29519-vozmozhny-li-puteshestvija-vo-vremeni.html

Скорости движения на различных велосипедах в разных условиях

5. Существует ли вообще движение?. Новое   в  повседневном. В мире больших скоростей

Время чтения: ~10 mins Андрей Смирнов 13

При поездке на велосипеде вокруг тебя нет железной коробки, как при езде на автомобиле, и ты открыт ветру и другим погодным условиям. При катании на велосипеде под тобой нет тяжелого стального корпуса, как при езде на мотоцикле, и ты просто летишь над землёй. Скорость в подобных условиях ощущается максимально полноценно.

Очень многие начинающие велосипедисты переоценивают скорость, с которой они ездят. Заметив на компьютере цифры 25-30 км/ч, многие думают, что с этой скоростью они чаще всего передвигаются, и это есть средняя скорость. Но это не так, такую скорость может удерживать только опытный велосипедист, а спортсмены кроме того способны на невообразимые рекорды.

Рекорды скоростей на велосипеде

Франческо Мозер

Максимальная скорость на велодроме – 51,151 км/ч. В гонке на треке в Мехико итальянский спортсмен Франческо Мозер в 1984 году за один час проехал расстояние 51,151 км.

Такой результат считается рекордом скорости и выносливости.

Как признался в 1999 году сам рекордсмен: удерживать высокую скорость и не сбивать темп ни на секунду ему помог кровяной допинг, который в то время был не запрещён.

Максимальная скорость по прямой, при установке на велосипед аэродинамического обтекателя – 133,78 км/ч. Этот мировой рекорд был поставлен 26 летним голландцем Себастьяном Боуйером в 2013 году на дистанции 200 метров.

Спортсмен лежал на спине, у этого велосипеда педали установлены спереди, а сам веломобиль полностью закрыт сверхлегким обтекателем из углеродного волокна.

Этот веломобиль был построен сообща студентами Свободного университета в Амстердаме и Дельфтского технологического университета.

Максимальная скорость по прямой, при укрытии велосипеда в воздушном мешке – 268,83 км/ч. Этот абсолютный рекорд скорости на велосипеде был поставлен 50-летним состоявшимся спортсменом Фредом Ромпельбергом из Нидерландов в 1995 году.

Такой результат был достигнут на ровной поверхности высохшего соляного озера в штате Юта (Бонневилькая соляная равнина), и только благодаря следованию велосипеда за спереди движущимся гоночным автомобилем, большой обтекатель которого защищал велосипедиста от набегающего потока воздуха.

Разумеется, был построен специальный велосипед, на котором невозможно ездить в обычных условиях.

Максимальная скорость при спуске с горы составляет 222 км/ч. Этот рекорд скорости установлен на маунтинбайке (горном велосипеде) французом Эриком Бароном в 2000 году на обкатанной ледяной горнолыжной трассе во Французских Альпах.

Для установки этого предела скорости был построен велосипед с улучшенной аэродинамикой, но с амортизированной вилкой и задним подвесом. Сам спортсмен был одет в аэродинамический жёсткий костюм-скафандр.

В 2002 году Эрик Барон, уже на сухом гравийном склоне вулкана Сьерра-Негро в Никарагуа смог разогнаться до 210,4 км/ч. Проехав около 400 метров велосипед под смельчаком, из-за невыносимой нагрузки на раму, разорвало на две части.

Эрик Барон получил сильный перелом бедра, вывих левого плеча и шейного отдела позвоночника, многочисленные ушибы и порезы, но спортсмен выжил благодаря шлему и защитному костюму.

Максимальная средняя скорость на шоссейном велосипеде составляет 41,654 км/ч. Такую скорость смог держать на дистанции «Тур де Франс» американский шоссейный гонщик Лэнс Армстронг в 2005 году. На спусках с гор участники этого соревнования развивают скорость близкую к 90 км/ч.

Труднодостижимые рекорды вдохновляют любого спортсмена, а обычному человеку, иногда выбирающемуся на велосипедные прогулки, намного интереснее узнать: с какой скоростью можно двигаться по обычным дорогам, не принимая участие в соревнованиях.

Для измерения скорости на велосипед, не так давно – пятнадцать-двадцать лет назад устанавливали большие, тяжелые и ненадежные механические спидометры.

Сегодня каждый может позволить себе купить миниатюрный электронный велокомпьютер, который кроме текущей скорости и общего пробега отображает среднюю скорость движения, максимальную скорость, длину маршрута, темп в минуту, расход калорий, время в пути, и другу полезную информацию в более дорогих моделях.

Средний велосипедист на современном горном велосипеде без чрезмерных усилий может держать среднюю скорость 18-20 км/ч по шоссе, проезжая 10 км за 30 минут.

Такой же велосипедист на шоссейном велосипеде может передвигаться со средней скоростью 20-25 км/ч по прямой асфальтированной дороге, проезжая 10 км за 25 минут. Пол ездока не имеет решающего значения, на таких скоростях.

Средним велосипедистом считается человек, который катается примерно 20-50 часов в месяц или 1-2 часа в день.

На небольших расстояниях около 10 км развивать среднюю скорость 18 км/ч может каждый, включительно и подростки от 12-14 лет. Более опытный велосипедист, проезжающий не одну тысячу километров в год, аналогичную дистанцию проедет в два раза быстрее.

У него выше физическая сила, лучше техника езды и, как правило, более качественный велосипед. Такие люди благодаря натренированной выносливости могут удерживать скорость около 30 км/ч, на дистанции 100 км по шоссе.

На такие расстояния средний велосипедист крайне редко выезжает, или не ездит вовсе.

В городских условиях необходимо: объезжать остановившиеся автомобили и общественный транспорт, останавливаться на перекрестках и переездах, притормаживать до входа в повороты и перед пешеходами, поэтому средняя скорость велосипедиста в городе всегда ниже, чем на шоссе, приблизительно на 5-10 км/ч.

Несмотря на то, что на шоссейном велосипеде можно ездить быстрее по асфальту, чем на горном, его нельзя рекомендовать для поездок по городу. Байкер сидит низко на шоссейнике и имеет плохую обзорность, а остановится аварийно на таком велосипеде без заноса не получиться.

Горный велосипед, хотя и медленнее шоссейного при движении по твердому покрытию, но более предпочтителен для езды по городу. На маунтингбайке очень легко маневрировать благодаря широкому рулю, а отличное сцепление широких шин с асфальтом позволит мгновенно застыть на месте.

При езде по пересеченной местности, даже на горном велосипеде, невозможно развить максимальную скорость 30 км/ч. Поскольку вне асфальта на пути часто встречаются ямы, бугры, песок, при проезде которых скорость значительно будет снижаться. При езде на маунтигбайке по лесной дороге средняя скорость обычно составляет 15 км/ч.

Советы по выбору велокомпьютера

С другой стороны, шоссейный велосипед, имея малую толщину покрышек и большее распределение веса на переднее колесо, фактически не годится для катания по лесу. Средняя скорость движения шоссейного велосипеда при езде по песку, опавшим листьям, снегу составит 5-8 км/ч.

При попытке преодолеть глубокий песок или снег на шоссейнике, переднее колесо занесет в сторону, или оно упрется в продавленный песок, и наездник, возможно, катапультируется через руль.

Кроме того, при езде на велосипеде без амортизаторов по гравийной или прокатанной гусеничным транспортом дороге, очень быстро накапливается усталость, из-за ударов на руки и позвоночник.

Уровень подготовки велосипедиста

Скорость движения больше всего зависит от физической силы и выносливости наездника. Опыт ездока больше влияет на скорость езды, чем выбор типа велосипеда. При движении по шоссе опытный велосипедист на горном велосипеде сможет удержать на хвосте начинающих гонщиков на шоссейных велосипедах, сохраняя более высокую скорость даже при подъёмах в гору.

На скоростях 25-27 км/ч существенно тормозит движение велосипеда сопротивление воздуха. Если дует встречный ветер, то становится трудно двигаться уже на скорости 10-15 км/ч.

На горном велосипеде с широким и высоко установленным рулём, а особенно, с низко опущенным седлом, намного тяжелее крутить педали на скорости 30 км/ч, чем на шоссейном велосипеде. У шоссейника имеется особенная деталь – узкий руль с нижним захватом (бараньи рога).

При ощутимом сопротивлении встречного ветра наездник шоссейного велосипеда может пригнуться к рулю, захватив руль за нижнюю часть дуги, таким образом, значительно снизив нагрузку.

Полностью избавиться от давления встречного воздуха можно только заехав в воздушный мешок, под защитой впереди идущего автобуса или грузового автомобиля. Но пристраиваться сзади за автобус или грузовой автомобиль очень опасно, так как они могут резко затормозить или повернуть при объезде ямы.

Сопротивление качению

Особенно ощущается это противодействие в начале движения. На разгон с места из-за него уходит больше энергии, как у велосипедиста, так и у двигателя автомобиля. После начала движения сопротивление качению меньше сказывается на величине усилия, необходимого для разгона. С увеличением скорости движения это противодействие постепенно уменьшается.

Увеличение трения между шиной и дорогой в первую очередь повышает величину сопротивления качению. Узкую шину, которая продавила мягкий грунт тяжело оторвать от земли.

Шина с широко расставленным протектором чрезмерно притирается к твердому асфальтному покрытию, к тому же при этом быстро стирается.

Поэтому выбирать покрышки по ширине, площади и глубине протектора следует с учётом того, по каким дорогам вы будете ездить на велосипеде.

Давление в камере значительно влияет на трение между шиной и дорогой. Чем сильнее накачана камера, тем легче колесо катится по асфальту и твердому грунту. Для облегчения езды по щебню, песку, грязи, снегу давление в камерах рекомендуется снизить.

Большой вес велосипеда сильно повышает величину сопротивления качению. Разогнать и толкать в гору тяжелый горный велосипед всегда сложнее, чем более легкий шоссейный.

Увеличение диаметра колеса уменьшает величину сопротивления качению. Велосипед для взрослых значительно дольше двигается накатом по прямой, чем детский. Кроме того большое колесо легче преодолевает неровности дороги, перекатываясь через маленькие ямки.

Трение в передаточных механизмах

Скорость велосипеда наверняка снизит не смазанная или грязная цепь, а также изношенные втулки и каретка. Если вы стремитесь достичь большой скорости, тогда вам необходимо купить дорогие втулки и механизм каретки, и в дальнейшем следить за состоянием их смазки.

Амортизаторы на велосипеде, особенно слишком мягкие, снижают скорость по ровному асфальту. Но они оказываются незаменимыми при преодолении участков дорог с мелкими неровностями. Амортизированная вилка при движении по городу оказывается не заменимой, тогда как от заднего подвеса можно и отказаться.

Вообще то, сильно придерживаться приведенных выше средних скоростей не стоит, тем более максимальных. Вы должны кататься на велосипеде с удобной для вас скоростью, получая удовольствие от поездки.

Источник: https://VeloFans.ru/raznoe/skorosti-dvizheniya-razlichnyh-velosipedah-raznyh-usloviyah

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.