§ 3. Скорость света. Введение в теорию относительности

Постоянна ли скорость света?

§ 3. Скорость света. Введение в теорию относительности

Чтобы определить скорость (пройденное расстояние / затраченное время) мы должны выбрать стандарты расстояния и времени. Разные стандарты могут дать разные результаты измерения скорости.

Is The Speed of Light Constant?
Steve Carlip, Philip Gibbs

Этот вопрос можно понять по разному. Поэтому есть разные ответы.

В воздухе или воде другая скорость света?

Да. Свет замедляется в прозрачных веществах, таких как воздух, вода или стекло. Во сколько раз замедляется свет определяется коэффициентом рефракции (показателем преломления) среды. Он всегда больше единицы. Это открытие сделал Леон Фуко в 1850 году.

Когда говорят о «скорости света», то обычно имеют виду скорость света в вакууме. Именно её обозначают буквой c .

Постоянна ли скорость света в вакууме?

В 1983 году Генеральной конференцией по мерам и весам ( Conference Generale des Poids et Mesures ), принято следующее определение метра в системе СИ:

Метр — это длина пути света в вакууме за время 1/299 792 458 секунды

Этим же определено, что скорость света в вакууме точно равна 299792458 м/с. Краткий ответ на вопрос «Является ли c константой»: Да, c константа по определению!

Но это не весь ответ. Система СИ очень практична. Её определения основаны на лучших известных методах измерения, и постоянно пересматриваются.

На сегодня для самого точного измерения макроскопических расстояний посылают импульс света лазера и измеряют время, за которое свет проходит требуемое расстояние. Время измеряется атомными часами. Точность лучших атомных часов 1/10 13 .

Именно такое определение метра обеспечивает минимальную погрешность измерения расстояния.

Определения системы СИ основаны на некоторых представлениях о законах физики. Например, предполагается, что частицы света фотоны не имеют массы.

Если бы фотон имел небольшую массу покоя, то определение метра в системе СИ было бы не корректным, потому что скорость света зависела бы от длины волны. Из определения не следовало бы, что скорость света постоянна.

Потребовалось бы уточнить определение метра, добавив цвет света, который должен использоваться.

Из экспериментов известно, что масса фотона очень мала или равна нулю. Возможная ненулевая масса фотона так мала, что она не имеет значения для определения метра в обозримом будущем.

Нельзя показать, что это точный ноль, но в современных общепризнанных теориях это ноль.

Если всё же не ноль, и скорость света не константа, то теоретически должна быть величина c — верхний предел скорости света в вакууме, и мы можем задать вопрос «является ли эта величина c константой?»

Раньше метр и секунда определялись разными способами основанными на лучших методах измерений. Определения могут измениться и в будущем. В 1939 году секунда определялась, как 1/84600 от средней длины суток, а метр, как расстояние между рисками на хранившемся во Франции стержне из сплава платины и иридия.

Сейчас при помощи атомных часов установлено, что средняя длина суток изменяется. Стандартное время уточняют, иногда добавляя или отнимая от него долю секунды. Скорость вращения Земли замедляется примерно на 1/100000 секунды в год из-за приливных сил между Землёй и Луной. В длине эталона метра могут быть ещё большие изменения из-за сжатия металла.

В результате в те времена скорость света, измеренная в единицах м/с, немного менялась со временем. Ясно, что изменения величины c были больше вызваны используемыми единицами измерения, чем непостоянством самой скорости света, но неправильно считать что скорость света теперь стала постоянной, только потому, что она константа в системе СИ.

Определения в системе СИ выявили, что для ответа на наш на вопрос, нужно уточнить, что мы имеем в виду, говоря о постоянстве скорости света. Мы должны задать определения единиц длины и времени для измерения величины c .

В принципе, можно получить разные ответы при измерении в лаборатории и при использовании астрономических наблюдений.

(Одно из первых измерений скорости света сделал в 1676 году Олаф Ремер на основе наблюдаемых изменении периода затмений спутников Юпитера.)

Для примера, мы могли бы взять определения, установленные между 1967 и 1983 годами. Тогда метр определялся, как 1650763.

73 длины волны красно-оранжевого света источника на криптоне-86, а секунда была определена (как и сегодня) как 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями цезия-133.

В отличие от прежних определений, эти основаны на абсолютных физических величинах, и применимы всегда и везде. Можно ли сказать, что скорость света постоянна в этих единицах?

Из квантовой теории атома мы знаем, что частоты и длины волн в основном определяются постоянной Планка, зарядом электрона, массами электрона и ядра, и скоростью света.

Из перечисленных параметров можно получить безразмерные величины, такие как постоянная тонкой структуры и отношение масс электрона и протона. Значения этих безразмерных величин не зависят от выбора единиц измерения.

Поэтому очень важен вопрос, постоянны ли эти значения?

Если бы они изменялись, это повлияло бы не только на скорость света. Вся химия основана на этих значениях, от них зависят химические и механические свойства всех веществ.

Скорость света изменялась бы по разному при выборе разных определений для единиц измерения.

В таком случае было бы больше смысла приписать её изменение изменению заряда или массы электрона, чем изменению самой скорости света.

Достаточно надёжные наблюдения показывают, что значения этих безразмерных величин не изменялись в течении большей части жизни вселенной. See the FAQ article Have physical constants changed with time?

[На самом деле постоянная тонкой структуры зависит от масштаба энергии, но здесь мы имеем в виду её низкоэнергетический предел.]

Специальная теория относительности

Определение метра в системе СИ также основано на допущении о корректности теории относительности. Скорость света константа в соответствии с основным постулатом теории относительности. Это постулат содержит две идеи:

  • Скорость света не зависит от движения наблюдателя.
  • Скорость света не зависит от координат во времени и пространстве.

Идея о независимости скорости света от скорости наблюдателя противоречит интуиции. Некоторые люди даже не могут согласиться, что эта идея логична. В 1905 году Эйнштейн показал, что эта идея логически корректна, если отказаться от предположения об абсолютной природе пространства и времени.

В 1879 году считалось, что свет должен распространяться по некоторой среде в пространстве, как звук распространяется по воздуху и другим веществам. Майкельсон и Морли поставили эксперимент по обнаружению эфира путём наблюдения изменения скорости света при изменении направления движения Земли относительно Солнца в течение года. К их удивлению изменение скорости света не было обнаружено.

Фицджеральд предположил, что это результат сокращения длины экспериментальной установки при её движении в эфире на такую величину, из-за которой обнаружить изменение скорости света не удаётся. Лоренц распространил эту идею на темп хода часов, и доказал, что эфир обнаружить невозможно.

Эйнштейн считал, что изменение длины и хода часов лучше понимать, как изменения пространства и времени, а не изменения в физических объектах. От абсолютного пространства и времени, введённых Ньютоном, нужно отказаться.

Вскоре после этого математик Минковский показал, что Эйнштейновскую теорию относительности можно трактовать в терминах четырёхмерной неевклидовой геометрии, рассматривая пространство и время как единую сущность — пространство-время .

Теория относительности не только математически обоснована, она также подтверждена многочисленными прямыми экспериментами. Позже опыты Майкельсона-Морли повторялись с большей точностью.

В 1925 году Дейтон Миллер объявил, что он обнаружил изменения в скорости света. Он даже получил награду за это открытие. В пятидесятых годах дополнительное рассмотрение его работы показало, что результаты, видимо, были связаны с дневными и сезонными изменениями температуры его экспериментальной установки.

Современные физические инструменты могли бы легко обнаружить движение эфира, если бы он существовал. Земля движется вокруг Солнца со скоростью около 30 км/с.

Если бы скорости складывались, в соответствии с ньютоновской механикой, то последние 5 цифр в величине скорости света, постулируемой в системе СИ, были бы бессмысленными.

Сегодня физики в CERN (Женева) и Fermilab (Чикаго) каждый день разгоняют частицы до скорости на волосок от скорости света. Любая зависимость скорости света от системы отсчёта была бы давно замечена, если только она не незаметно мала.

Что, если вместо теории об изменении пространства и времени, мы бы последовали теории Лоренца-Фицджеральда, которые предположили, что эфир существует, но его нельзя обнаружить из-за физических изменений в длине материальных объектов и в темпе хода часов?

Чтобы их теория согласовалась с наблюдениями, эфир должен быть необнаружим при помощи часов и линейки. Всё, включая наблюдателя, сокращалось бы и замедлялось точно на нужную величину.

Такая теория могла бы делать те же предсказания для всех экспериментов, что и теория относительности. Тогда эфир был бы метафизической сущностью, если только не найдут какой-нибудь другой способ его обнаружения — такой способ пока никто не нашёл.

С точки зрения Эйнштейна такая сущность была бы ненужным усложнением, лучше убрать её из теории.

Общая теория относительности

Эйнштейн разработал более общую теорию относительности, которая объяснила гравитацию в терминах искривления пространства-времени, и он говорил об изменении скорости света в этой новой теории. В 1920 году в книге «Relativity. The special and general theory» он пишет:
. ..

в общей теорией относительности закон постоянства скорости света в вакууме, который является одним из двух фундаментальных допущений в специальной теории относительности, [. . .] не может быть безоговорочно справедлив. Искривление луча света может реализоваться только, когда скорость распространения света зависит от его положения.

Поскольку Эйнштейн говорил о векторе скорости (скорость и направление), а не просто о скорости, то не ясно, имел ли он в виду, что величина скорости изменяется, но ссылка на специальную теорию относительности говорит о том, что да, имел в виду.

Такое понимание совершенно верно, и имеет физический смысл, но в соответствии с современной трактовкой скорость света постоянна и в общей теории относительности.

Сложность здесь в том, что скорость зависит от координат, и возможны разные толкования.

Чтобы определить скорость (пройденное расстояние / затраченное время) мы должны вначале выбрать некоторые стандарты расстояния и времени. Разные стандарты могут дать разные результаты.

Это применимо и к специальной теории относительности: если измерять скорость света в ускоряющейся системе отсчёта, то в общем случае она отличается от c .

В специальной теории относительности скорость света константа в любой инерциальной системе отсчёта.

В общей теории относительности соответствующим обобщением является то, что скорость света константа в любой свободно падающей системе отсчёта в достаточно малой области, чтобы можно было пренебречь приливными силами. В приведённой цитате Эйнштейн не говорит о свободно падающей системе отсчёта.

Он говорит о системе отсчёта, находящейся в покое относительно источника гравитации. В такой системе отсчёта скорость света может отличаться от c из-за влияния гравитации (кривизны постранства-времени) на часы и линейки.

Если общая теория относительности верна, то постоянство скорости света в инерциальной системе отсчёта — это тавтологическое следствие геометрии пространства-времени. Путешествие со скоростью c в инерциальной системе отсчёта — это путешествие вдоль прямой мировой линии на поверхности светового конуса.

Использование в системе СИ константы c , как коэффициента для связи метра и секунды полностью оправдано, как теоретически, так и практически потому, что c не только скорость света — это фундаментальное свойство геометрии пространства-времени.

Как и для специальной теории относительности, предсказания общей теории относительности подтверждены многими наблюдениями.

В итоге мы приходим к выводу, что скорость света постоянна не только в соответствии с наблюдениями. В свете хорошо проверенных физических теорий даже не имеет смысла говорить о её непостоянстве.

Steve Carlip, Philip Gibbs, 1997

Перевод Е.Корниенко

Источник: http://cyber-ek.ru/science/speed_of_light.html

Теория относительности Эйнштейна

§ 3. Скорость света. Введение в теорию относительности

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

В 1905 году Альберт Эйнштейн опубликовал свои первые статьи. В них шла речь о движении со скоростью, близкой к скорости света. Выдвинутая им теория получила название специальной теории относительности.

Альберт Эйнштейн (1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца.

Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час – скорость человека плюс скорость поезда.

Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна, независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет.

Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов».

Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc2, в которой E – энергия, m – масса, а c – скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба.

Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности. Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.

Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой.

В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры».

«Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии – науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Источник: https://www.what-this.ru/scientists/einstein-relativity-theory.php

Теория относительности в картинках

§ 3. Скорость света. Введение в теорию относительности

Tutorial

В своей статье я хотел бы рассказать о теории относительности. Эта теория не требуется в представлении. С самого своего создания она была окутана ореолом тайны, поскольку полностью подрывает наши привычные представления о пространстве и времени. Все мы в школе учили формулы теории относительности, но мало кто действительно понимал их. И это не удивительно, ведь человеку, чтобы по-настоящему понять какую-то теорию во всей её красоте, полноте и непротиворечивости, не достаточно знать формулы. Нужно иметь какой-то визуальный ориентир, нужна динамика, чтобы было что-то, что можно повертеть в руках. Я решил восполнить этот пробел и написал небольшую программку, в которой можно «повертеть в руках» пространство-время. Мы, как настоящие исследователи, с помощью небольших экспериментов попытаемся выяснить основные свойства этой загадочной материи. Под катом много картинок (и ни одной формулы). Сразу следует прояснить, что существует две теории относительности: — специальная теория относительности (СТО) рассматривает механику движения тел в пустом (не искривленном) пространстве-времени. — общая теория относительности (ОТО) изучает явления гравитации и искривление пространства-времени объектами, обладающими массой. Все описанное ниже относится к первой из них.

Евклидово пространство и пространство Минковского

Прежде, чем рассматривать пространство-время, давайте вспомним, что такое обычное евклидово пространство.

И так, у нас имеется плоскость. В этой плоскости имеются некоторые геометрические фигуры: точки, отрезки. Так же у нас имеются две операции: параллельный перенос, и поворот. Давайте внимательно рассмотрим эти две операции.

Далее перейдем к рассмотрению так называемого пространства Минковского. В нем мы оставили параллельный перенос, но операцию поворота заменили на другую операцию. Как видите, при «повороте» каждая точка движется вдоль сереньких кривых. В результате все точки вытягиваются либо вдоль одной желтой прямой, либо вдоль другой. При таком «повороте» отрезки сохраняют свою форму и переходят в отрезки. Собственно, это и есть пространство-время. Давайте, будем считать, что горизонтальная ось — это пространство, а вертикальная — время. Будем считать, что время идет снизу вверх. Точка в пространстве-времени — это некоторое событие, которое произошло в некотором месте в некоторое время. А отрезок — это некоторый процесс. Например, если объект движется, то будем обозначать его движение отрезком. Чтобы Вы немного сориентировались, поставим первый эксперимент.

Эксперимент 1. Ньютоновская механика

Первым делом будем рассматривать объекты движущиеся с небольшими скоростями (много меньше скорости света). Допустим, имеется некоторый неподвижный объект, например дерево. Нарисуем его с помощью вертикального отрезка. Так же у нас имеется некоторый движущийся объект — автомобиль. Мы видим, что автомобиль едет навстречу дереву. Нарисуем еще один движущийся объект.

В результате получаем картину: Обратите внимание, что чем сильнее наклон, тем скорость объекта больше. Так выглядит наша картина из неподвижной системы отсчета. А что мы увидим, если будем сидеть в автомобиле? Для этого нам нужно немножко «перекосить» нашу плоскость. Все правильно. Автомобиль теперь неподвижен, а дерево и человек движутся нам навстречу.

Точно так же мы можем перейти в систему отсчета, связанную с человеком. Для этого нам нужно «перекосить» пространство-время в другую сторону. В целом процесс перехода от одной системы отсчета в другую выглядит следующим образом: Такое преобразование называется «преобразованием Галилея». При этом каждая точка движется вдоль горизонтальной прямой.

Это значит, что время одинаково во всех системах отсчета (время абсолютно). Давайте теперь перейдем к бОльшим масштабам, «сжав» нашу ось X. На самом деле, переход от одной системы отсчета в другую есть ни что иное, как «поворот» в пространстве Минковского, а преобразования Галилея — это всего лишь предельный случай для маленьких скоростей.

Мы видим, что точки теперь движутся не горизонтально. Т.е. время не является абсолютной величиной, а зависит от выбранной системы отсчета.

Эксперимент 2. Замедление времени

Допустим имеются два наблюдателя, один неподвижный, другой летит на своем космическом корабле от него с некоторой скоростью. Отметки на отрезке показывают, как идет время внутри объекта. Мы видим, что время неподвижного наблюдателя движется быстрее, чем у подвижного (один час у движущегося наблюдателя наступает позже, чем у неподвижного).

Но точно такую же картину видит и второй наблюдатель. Вот так одна система отсчета переходит в другую Получается странная ситуация — два наблюдателя смотрят друг на друга, и они друг другу кажутся «заторможенными». Чтобы выяснить, кто же из них на самом деле «тормоз», второй наблюдатель разворачивает свой космический корабль и летит обратно.

Вместе они сверяют часы и выясняют, что у неподвижного наблюдателя прошло 5 единиц времени, а у подвижного — чуть больше 4. Т.е. наблюдатель, который «сделал крюк» в пространстве-времени потратил меньше своего внутреннего времени, чем неподвижный наблюдатель. Но то же самое, только с точностью до наоборот, произошло бы, если бы первый наблюдатель полетел на встречу второму.

Вывод: у неподвижного наблюдателя время всегда идет быстрее, чем у движущегося.

Эксперимент 3. Скорость света.

Допустим, у нас имеется неподвижная космическая станция. От неё отстыковался некоторый корабль. Перейдем в систему отсчета этого корабля. Далее от этого корабля отстыковался другой корабль. Затем от второго корабля отстыковался третий. и так далее.

Таким образом я пытался изобразить процесс ускорения. Очевидно, что каждый следующий корабль будет двигаться с большей скоростью, чем предыдущий. Давайте теперь вернемся к первому кораблю и посмотрим. Напомню Вам, что наклон определяет скорость.

Желтая линия, а точнее её наклон, показывает скорость света.

По картинке видно, что каждый следующий корабль приближается к скорости света, но не может превысить её. Так же видно, что внутреннее время с увеличением скорости все больше замедляется.

Из этого мы делаем вывод, что ничто не может двигаться со скоростью, превышающей скорость света.

Пусть теперь каждый корабль выпускает луч света.
Мы видим, что свет в любой системе отсчета движется со скоростью света.

Эксперимент 4. Световой конус

Две желтые линии очерчивают фигуру, называемую «световой конус». Световой конус разделяет пространство-время на две области, которые я отметил красным и зеленым цветами. Если какое-то событие находится в красной области, то мы будем говорить, что событие находится в пределах светового конуса.

Это означает, что свет из начала координат успевает долететь до нашей точки. Если событие находится в зеленой области, то мы говорим, что событие находится за пределами светового конуса, и свет из начала координат не успевает долететь до этого события. Рассмотрим следующий пример.

Имеется три одновременных события Давайте посмотрим, что произойдет, если мы будем менять систему отсчета. Мы видим, что в другой системе отсчета события вовсе не являются одновременными. Теперь события не просто смещаются во времени, они еще меняют свой хронологический порядок.

Событие, которое произошло раньше некоторого события, в другой системе отсчета может произойти позже. Но как такое может быть? Не является ли это нарушением причинно-следственных связей? Напомню, что если событие находится за пределами светового конуса, это значит, что свет не может долететь до этого события за отведенное время.

А поскольку ничто (никакой объект или сигнал) не может двигаться быстрее скорости света, получается, что событие, произошедшее в точке А, никак не может повлиять на событие в точке Б. То же самое справедливо и в обратную сторону. Событие в точке Б никак не может повлиять на событие в точке А.

Про такие события говорят, что они не связаны причинно-следственными связями. Получается, что событие, находящееся за пределом светового конуса относительно данного, не связано с ним причинно-следственными связями.

Эксперимент 5. Движение со сверх-световой скоростью

Все космические объекты: солнечные системы, галактики — находятся на гигантских расстояниях друг от друга. И даже двигаясь со скоростью света, нам потребуется очень много времени, чтобы преодолеть эти расстояния.

Например, ближайшая к нам звезда (альфа-Центавра) находится на расстоянии 4 световых года, а ближайшая галактика (Большое Магелланово Облако) — уже 160 тысяч световых лет. Если до альфа-Центавра мы еще можем слетать «туда и обратно», то слетать «туда и обратно» в соседнюю галактику уже не получится.

Точнее, улететь-то мы сможем, а вот когда вернемся, на Земле пройдет уже 320 тысяч лет (напомню, что внутри объекта, движущегося со скоростью света, время практически стоит на месте). Что же делать? Писатели-фантасты в своих произведениях очень ловко обходят это ограничение.

Чего-только они не напридумывали: сверхскоростные двигатели, гипер-пространства, мультиплексы, искривление пространства-времени, прыжки через червоточины, черные дыры и т.д. На самом деле, проблема гораздо глубже, чем может показаться. Заключается она в том, что за пределами светового конуса НЕ МОГУТ существовать причинно-следственные связи.

Иначе мы неизбежно придем к противоречиям. Рассмотрим пример. Мы сидим на своей планете. В один прекрасный момент наши ученые изобретают «супер-телепортатор» способный телепортировать нас на любое расстояние за минимальное количество времени. Ну мы взяли и телепортировались в соседнюю галактику.

Посидев в другой галактике, мы отправились на дальнейшее исследование космоса. Если мы теперь перейдем в систему отсчета, связанную с нашим кораблем, то увидим следующее. Мы видим, что наша исходная точка (планета Земля) сместилась в будущее.

А поскольку законы природы во всех системах отсчета работают одинаково, то мы можем снова воспользоваться нашим «супер-телепортатором» и вернуться в собственное прошлое. Получается, что движение со сверх-световой скоростью, эквивалентно перемещению во времени, а оно тянет за собой кучу парадоксов. Таким образом, проблема космических путешествий не в том, что мы не умеем искривлять пространство-время или строить сверх-световые двигатели, а в том, что даже теоретическая возможность таких перемещений подрывает все причинно-следственные связи.

Заключение

На этом в общем-то и все. Самое основное, кажется, рассказал. Надеюсь, было понятно.

При написании статьи была использована программка (Ссылка на github)

Comments 342

today at 12:27

today at 12:00

Источник: https://m.habr.com/post/169347/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.