§ 19. Закон тяготения Эйнштейна. Введение в теорию относительности

Теория относительности Эйнштейна

§ 19. Закон тяготения Эйнштейна. Введение в теорию относительности

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

В 1905 году Альберт Эйнштейн опубликовал свои первые статьи. В них шла речь о движении со скоростью, близкой к скорости света. Выдвинутая им теория получила название специальной теории относительности.

Альберт Эйнштейн (1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца.

Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час – скорость человека плюс скорость поезда.

Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна, независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет.

Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов».

Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc2, в которой E – энергия, m – масса, а c – скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба.

Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности. Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.

Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой.

В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры».

«Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии – науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Источник: https://www.what-this.ru/scientists/einstein-relativity-theory.php

Спустя сто лет теория гравитации Эйнштейна стала важнейшим делом физиков

§ 19. Закон тяготения Эйнштейна. Введение в теорию относительности

Немногие люди в этом мире хорошо ее понимают, но общая теория относительности принесла Эйнштейну славу и звание человека века по версии журнала Time.

На конференции струнных теоретиков в Бангалоре на прошлой неделе, которую посетили звезды мира физики, особое заседание провели в честь столетия с момента открытия этой великой теории гравитации.

И если в следующие несколько десятилетий начатое Эйнштейном будет завершено, это будет величайшее событие для науки за много-много лет.

Ученым лестно, что в 20 веке физик-теоретик стал почетным членом научного сообщества. И хотя физики, безусловно, празднуют великое достижение Эйнштейна (круглая дата, как ни крути), они также пытаются растянуть эту теорию до предела, проверить ее при любых возможных условиях и подобрать альтернативы и дополнения, которые выведут ее в новые домены.

Среди особо почетных проектов отмечается обсерватория LIGO (Laser Interferometer Gravitational-Wave Observatory), чрезвычайно амбициозный проект со сложным оборудованием для поиска гравитационных волн, предсказанных в рамках теории Эйнштейна.

Индийская LIGO станет частью глобальной сети поиска гравитационных волн, который также может стать новым окном во Вселенную. Хотя большинство ученых сходится во мнении, что гравитационные волны существуют, прямое наблюдение гравитационных волн может преподнести сюрпризы и разбавить существующие физические теории.

Усовершенствованная версия двух LIGO в США совершит первые наблюдения через несколько месяцев. «Мы располагаем чувствительностью, которая намного выше той, которую мы имели в первом десятилетии этого века», — говорит Питер Саулсон, профессор физики Сиракузского университета.

Эксперименты LIGO будут продолжаться в течение длительного времени. Между делом, еще две обсерватории модернизируются в Европе и присоединятся к уже обновленным LIGO — Advanced LIGO — в поиске гравитационных волн. Европейские ученые планируют более амбициозные миссии в будущем.

https://www.youtube.com/watch?v=sBMPhRdLCHs

Европейское космическое агентство в настоящее время занимается разработкой зонда, который будет запущен в 2020 году. «Эвклид» (Euclid) будет картировать структуру темной части Вселенной, той ее части, о которой мы знаем, но не видим. Так получилось, что мы видим только 4% Вселенной.

Хотя эти эксперименты проверят общую теорию относительности на прочность, теоретики пытаются расширить или модифицировать творение Эйнштейна в сферах, где, как им кажется, она не выдержит.

Например, в странной области черных дыр, сверхмассивных коллапсировавших звезд, которые должны существовать, как то прогнозирует теория.

Теория Эйнштейна, в свою очередь, коллапсирует в этих звездах, поскольку предполагает точки бесконечной плотности — сингулярности.

Математически сингулярность не очень сложная, но никто не знает, что она означает с физической точки зрения. Физики не могут дать точное предсказание того, что произойдет с объектом на поверхности звезды, когда она коллапсирует в бездну. Решиться это может только одним способом.

«Классические теории гравитации не решают проблему сингулярности, — говорит Эль Шрирамкумар, доцент физики в ИИТ Мадраса. — Ее должна решить квантовая теория гравитации».

Столпы современной физики

Спустя два года после публикации своей теории относительности Эйнштейн слегка изменил свои уравнения, представив так называемую космологическую постоянную.

Она нужна была, чтобы стабилизировать Вселенную против внутренней силы тяжести. Тогда ученые считали, что Вселенная статична.

Позже выяснилось, что она расширяется, и Эйнштейн назвал космологическую постоянную своей величайшей ошибкой.

Но не так давно космологическая постоянная снова появилась в виде таинственной темной энергии в пустом космосе; она должна расталкивать галактики все быстрее и быстрее. Никто не знает, почему. Решение этой проблемы является одной из самых сложных в науке на данный момент.

Еще большей проблемой является объединение теории гравитации Эйнштейна с квантовой механикой, другим столпом современной физики, который описывает поведение вещества на мельчайших масштабах. Квантовая механика чрезвычайно успешно описывает поведение материи и была проверена множество раз. Но она совершенно несовместима с общей теорией относительности.

Возможно, обе теории являются частью еще более общей теории, которая пока не была разработана. Физики считают, что объединение гравитации с квантовой механикой — наиболее важная проблема теоретической физики. Это важные проблемы, их решение может перевернуть наше понимание Вселенной, почти так же, как Эйнштейн перевернул его с разработкой своей теории.

Когда Эйнштейн начал работать над общей теорией относительности, он уже изменил направление физики несколькими крупными открытиями. В 1905 году он вывел знаменитое уравнение E = mc2.

Он сформулировал специальную теорию относительности, теорию взаимосвязи времени и пространства. Эйнштейн объяснил броуновское движение, снование частиц на поверхности жидкости, которое подтвердило существование атомов и молекул.

Он открыл фотоэлектрический эффект, который принес ему Нобелевскую премию.

Но еще больше работы только предстоит проделать. За два века до Эйнштейна Исаак Ньютон осуществил замечательный прорыв. Он выяснил, что падающее яблоко и вращающиеся планеты подчиняются одному закону, который нынче известен как закон обратных квадратов тяготения.

Ньютон сумел рассчитать силы между двумя удаленными телами, но не нашел объяснения тому, как эта сила действует на расстоянии. После публикаций в 1905 году Эйнштейн понял гравитацию. Он был простым клерком, вовсе не знаменитым. Работал над физикой в свободное время.

В следующие десять лет Эйнштейн сформулировал одну из самых хитроумных и прекрасных научных теорий всех времен, не имея никаких экспериментальных данных для проверки своих идей и руководствуясь исключительно красотой своих уравнений.

«Даже если бы у нее не было практического применения, — говорит Т.

Падманабхан, профессор Межвузовского центра астрономии и астрофизики в Пуне, — я бы назвал общую теорию относительности одним из величайших интеллектуальных достижений всех времен».

Однако, как оказалось, у этой теории есть применения. Наша глобальная система позиционирования (GPS) не будет работать без теории Эйнштейна. Мы не поймем глубины Вселенной без ОТО. В этой теории заключено намного больше, чем мог подумать сам Эйнштейн в свое время.

Эйнштейн сделал важное: он заявил, что гравитация — это свойство пространства и времени, двух понятий, которые он сам и объединил. Объект в любой точке Вселенной искривляет пространство-время вокруг себя. Чем массивнее объект, тем больше кривизна.

Эта кривизна заставляет другие объекты в окрестностях сползать к первому, подобно тому, как объект, помещенный на краю круглой вогнутой посуды, скользит к центру.

Поскольку планеты движутся, они продолжают скользить к центру и вращаться в замкнутом цикле.

В этой теории гравитация на самом деле не сила. Это свойство пространства-времени. Теория Эйнштейна дала некоторые прогнозы, которые можно проверить. В 1919 году, когда астрономы использовали затмение, чтобы проверить изгиб света вокруг звезд, как предсказал Эйнштейн, он мгновенно стал мировой знаменитостью.

Расширение Вселенной

С годами его теория оказала огромное влияние на курс физики, подтолкнув к развитию огромное поле космологии. «До Эйнштейна космология занималась вопросами религии и философии, — говорит Дэвид Гросс, профессор и бывший директор Института теоретической физики Кавли в Санта-Барбаре. — После Эйнштейна она стала предметом физики».

В 1929 году произошло одно из величайших научных открытий всех времен: Эдвин Хаббл обнаружил, что наша Вселенная расширяется. Если бы Эйнштейн был немного смелее, он мог извлечь такой вывод из своей теории.

«Эйнштейн струсил, — говорит Падманабхан, — но общая теория относительности обладала силой предсказать расширение Вселенной». К концу двадцатого века ученые обнаружили еще один поразительный факт: расширение Вселенной ускоряется.

Галактики разлетаются все быстрее и быстрее, и настанет день, когда вся материя будет буквально разорвана на части.

По всему миру запланировано множество испытаний, направленных на выяснение того, что вызывает расширение. Зонд «Эвклид» будет оценивать темную энергию — и темную материю заодно — и ее распределение по изображениям далеких галактик.

Также он будет искать колебания в кластеризации галактик, которые дадут нам подсказки о природе темной энергии и космологической постоянной. Поиск гравитационных волн тоже идет.

Хотя их обнаружение может и не стать сюрпризом, оно может намекнуть нам на темные стороны Вселенной.

Гравитоны — частицы гравитационных волн — как полагают, не имеют массы.

Что будет, если они окажутся с массой, как те неуловимые нейтрино не так давно? Открытие того, что нейтрино обладают крайне малой, но массой, породило новые области в физике частиц, поскольку существующие теории такого не предполагали.

«Измерение гравитационных волн может указать на несоответствия, которые приведут к модификациям общей теории относительности», — считает Бала Лайер, профессор ICTS в Бангалоре.

Через несколько десятков лет завершение начатого Эйнштейном может стать важнейшим событием в науке за долгое время. Сам Эйнштейн этого ожидал. «Эйнштейн считал, что его теория станет ступенькой, — говорит Дэвид Гросс. — Он не думал о ней как об абсолюте». И кто бы не создал успешное продолжение ОТО, он станет таким же известным, как Эйнштейн.

Источник: https://Hi-News.ru/science/spustya-sto-let-teoriya-gravitacii-ejnshtejna-stala-vazhnejshim-delom-fizikov.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.